Segment Routing v6

Technical Overview

Jakub Horn
Technical Marketing Engineer
CCIE#7543
Content

- SRH
 - draft-ietf-6man-segment-routing-header-14

- Network Programmability
 - draft-filsfils-spring-srv6-network-programming-05

- IGP
 - draft-bashandy-isis-srv6-extensions-03

- BGP
 - draft-dawra-idr-srv6-vpn-04

- DEMO
 - service chaining
Segment Routing v6 Header
IPv6 SR Header

- IPv6 header
- Next header field: *Indicates what comes next*
IPv6 SR Header

- IPv6 header
- Next header field: 4 → IPv4
IPv6 SR Header

- IPv6 header
 - Next header field: 43 → Routing
- IPv6 Routing extension header
 - Generic header format defined in RFC 2460
 - Next Header: IPv4, TCP, UDP, …
 - Hdr Ext Len: Any IPv6 device can skip this header
 - Segments Left: Ignore extension header if equal to 0
 - Specific data depends on Routing Type field:
 - 0 Source Route (deprecated since 2007)
 - 1 Nimrod (deprecated since 2009)
 - 2 Mobility (RFC 6275)
 - 3 RPL Source Route (RFC 6554)
IPv6 SR Header

- IPv6 header
 - Next header field: \texttt{43} \rightarrow \texttt{Routing}

- IPv6 Routing extension header
 - Generic header format defined in RFC 2460
 - Next Header: IPv4, TCP, UDP, …
 - Hdr Ext Len: Any IPv6 device can skip this header
 - Segments Left: Ignore extension header if equal to 0
 - Specific data depends on Routing Type field:
 - 0: \texttt{Source Route} (deprecated since 2007)
 - 1: \texttt{Nimrod} (deprecated since 2009)
 - 2: Mobility (RFC 6275)
 - 3: RPL Source Route (RFC 6554)
 - 4: Segment Routing (tentative)
IPv6 SR Header

- Each segment is an IPv6 address
- Segments are encoded in reverse order
 - Last segment index is 0
 - First segment index is **First Segment**
- Active segment index is **Segments Left**
- Active Segment is copied in the Destination Address field of the IP header
- Additional data can be stored in TLVs
 - Security (HMAC), NFV metadata, …
SR Header Processing
Source Node

- Source node is SR-capable
- SR Header (SRH) is created with
 - Segment list in reversed order of the path
 - Segment List [0] is the LAST segment
 - Segment List [n-1] is the FIRST segment
 - Segments Left is set to n – 1
 - First Segment is set to n – 1
- IP DA is set to the first segment
- Packet is send according to the IP DA
 - Normal IPv6 forwarding

IPv6 Hdr

<table>
<thead>
<tr>
<th>Version</th>
<th>Traffic Class</th>
<th>Flow Label</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Payload Length</th>
<th>Next = 43</th>
<th>Hop Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source Address = A::</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination Address = B::</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SR Hdr

<table>
<thead>
<tr>
<th>Next Header</th>
<th>Len = 6</th>
<th>Type = 4</th>
<th>SL = 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Flags</th>
<th>RESERVED</th>
</tr>
</thead>
<tbody>
<tr>
<td>First = 2</td>
<td></td>
</tr>
<tr>
<td>Segment List [0] = D::</td>
<td></td>
</tr>
<tr>
<td>Segment List [1] = C::</td>
<td></td>
</tr>
<tr>
<td>Segment List [2] = B::</td>
<td></td>
</tr>
</tbody>
</table>

Payload
Non-SR Transit Node

- Plain IPv6 forwarding
- Solely based on IPv6 DA
- No SRH inspection or update
SR Segment Endpoints

- SR Endpoints: SR-capable nodes whose address is in the IP DA
- SR Endpoints inspect the SRH and do:
 - IF Segments Left > 0, THEN
 - Decrement Segments Left (-1)
 - Update DA with Segment List [Segments Left]
 - Forward according to the new IP DA

<table>
<thead>
<tr>
<th>IPv6 Hdr</th>
<th>Version</th>
<th>Traffic Class</th>
<th>Flow Label</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Payload Length</td>
<td>Next = 43</td>
<td>Hop Limit</td>
</tr>
<tr>
<td></td>
<td>Source Address = A::</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Destination Address = C::</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SR Hdr</td>
<td>Next Header</td>
<td>Len= 6</td>
<td>Type = 4</td>
</tr>
<tr>
<td></td>
<td>First = 2</td>
<td>Flags</td>
<td>RESERVED</td>
</tr>
</tbody>
</table>

- Segment List [0] = D::
- Segment List [1] = C::
- Segment List [2] = B::
- Payload
SR Segment Endpoints

- SR Endpoints: SR-capable nodes whose address is in the IP DA
- SR Endpoints inspect the SRH and do:
 - IF Segments Left > 0, THEN
 - Decrement Segments Left (-1)
 - Update DA with Segment List [Segments Left]
 - Forward according to the new IP DA
 - ELSE (Segments Left = 0)
 - Remove the IP and SR header
 - Process the payload:
 - Inner IP: Lookup DA and forward
 - TCP / UDP: Send to socket

Standard IPv6 processing
The final destination does not have to be SR-capable.
Network Programability
Segment format

<table>
<thead>
<tr>
<th>Locator</th>
<th>Function</th>
</tr>
</thead>
</table>

- **SRv6 SIDs are 128-bit addresses**
 - **Locator**: most significant bits are used to **route** the segment to its **parent node**
 - **Function**: least significant bits identify the **action** to be performed on the **parent node**
 - **Argument** [optional]: Last bits can be used as a local function argument

- **Flexible bit-length allocation**
 - Segment format is **local knowledge** on the parent node

- **SIDs have to be **specifically enabled** as such on their parent node**
 - A local address is **not** by default a local SID
 - A local SID does not have to be associated with an interface
END – Default endpoint

- **Default endpoint** behavior (node segment)
 - Decrement Segments Left, update DA
 - Forward according to new DA

- Node B advertises prefix B::/64 (B::/64 is the SID **locator**)
 - Packets are forwarded to B along the default routes (shortest path)

- On B, the **default endpoint** behavior is associated with ID 0 (0 is the **function**)

- The SID corresponding to the **default endpoint** behavior on node B is B::1

![Diagram of IPv6 packets and SR Hdr](image)
END.X – Endpoint then Xconnect

- **Endpoint xconnect** behavior (adjacency segment)
 - Decrement Segments Left, update DA
 - **Forward on the interface associated with the Xconnect segment**

- Node C advertises prefix C::/64
 - Packets are forwarded to C along the default routes (shortest path)

- On C, the **endpoint xconnect** behavior for link (C, E) is associated with ID CE

- The SID corresponding to **endpoint xconnect-(C,E)** behavior on node C is C::CE
Functoins Defined in Net Programming

- **End** Endpoint function The SRv6 instantiation of a prefix SID
- **End.X** Endpoint function with Layer-3 cross-connect The SRv6 instantiation of a Adj SID
- **End.T** Endpoint function with specific IPv6 table lookup
- **End.DX2** Endpoint with decapsulation and Layer-2 cross-connect L2VPN use-case
- **End.DX2V** Endpoint with decapsulation and VLAN L2 table lookup EVPN Flexible cross-connect use-cases
- **End.DT2U** Endpoint with decaps and unicast MAC L2 table lookup EVPN Bridging unicast use-cases
- **End.DT2M** Endpoint with decaps and L2 table flooding EVPN Bridging BUM use-cases with ESI filtering
- **End.DX6** Endpoint with decapsulation and IPv6 cross-connect IPv6 L3VPN use (equivalent of a per-CE VPN label)
- **End.DX4** Endpoint with decapsulation and IPv4 cross-connect IPv4 L3VPN use (equivalent of a per-CE VPN label)
- **End.DT6** Endpoint with decapsulation and IPv6 table lookup IPv6 L3VPN use (equivalent of a per-VRF VPN label)
- **End.DT4** Endpoint with decapsulation and IPv4 table lookup IPv4 L3VPN use (equivalent of a per-VRF VPN label)
- **End.DT46** Endpoint with decapsulation and IP table lookup IP L3VPN use (equivalent of a per-VRF VPN label)
- **End.B6** Endpoint bound to an SRv6 policy SRv6 instantiation of a Binding SID
- **End.B6.Encaps** Endpoint bound to an SRv6 encapsulation Policy SRv6 instantiation of a Binding SID
- **End.BM** Endpoint bound to an SR-MPLS Policy SRv6/SR-MPLS instantiation of a Binding SID
- **End.S** Endpoint in search of a target in table T
 - **T.Insert** Transit behavior with insertion of an SRv6 policy
 - **T.Insert.Red** Transit behavior with reduced insert of an SRv6 policy
 - **T.Encaps** Transit behavior with encapsulation in an SRv6 policy
 - **T.Encaps.Red** Transit behavior with reduced encaps in an SRv6 policy
 - **T.Encaps.L2** Transit behavior of the received L2 frame
 - **T.Encaps.L2.Red** Transit with reduce encaps of received L2 frame
SRv6 for anything

Optimized for HW processing
e.g. Underlay & Tenant use-cases

Optimized for SW processing
e.g. NFV, Container, Micro-Service

TAG

Segments Left

Locator 1 Function 1
Locator 2 Function 2
Locator 3 Function 3

Metadata TLV
ISIS easily extensible

- Uses TLVs
- For Srv6:
 - Locator – for Reachability (twice for backward compatibility)
 - END function - TI-LFA and TE
 - END.X function for each interface in routing protocol TI-LFA and TE
 - Capabilities:
 - Max SID depth for different functions
- OSPF will follow
VPNv4 – Basic SRv6 VPN – Control Plane

- **iBGP**
 - AFI:1 - IPv4
 - SAFI:128
 - NLRI: 4.0.0.0/8
 - NH: A2::A2
 - Label: ImplNull
 - SID: A2::C4

- **eBGP**
 - AFI:1 - IPv4
 - SAFI:1
 - NLRI: 4.0.0.0/8
 - NH: 3.3.3.2

- **iBGP**
 - AFI:1 - IPv4
 - SAFI:1
 - NLRI: 4.0.0.0/8
 - NH: 4.4.4.1

- **eBGP**
 - AFI:1 - IPv4
 - SAFI:1
 - NLRI: 4.0.0.0/8
 - NH: 3.3.3.2

- **IGP**
 - A1::/64
 - A2::/64

- **VPNv4**
 - A1::A1
 - A2::A2

- **VPNv6**
 - A1::C4
 - A2::C4

- **Private ASNs**
 - 3::0.0.0.8
 - 4::0.0.0.8

- **Public ASNs**
 - 1::0.0.0.0/8
 - 2::0.0.0.0/8
VPNv4 – Basic SRv6 VPN - Data Plane

IPv4 (3.1.1.1, 4.1.1.1)

payload

IPv6 (A1::1, A2::C4)

IPv4 (3.1.1.1, 4.1.1.1)

payload

IPv4 (3.1.1.1, 4.1.1.1)

payload

<table>
<thead>
<tr>
<th>3</th>
<th>1</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.0.0.0/8</td>
<td>A1::A1</td>
<td>A2::A2</td>
<td>4.0.0.0/8</td>
</tr>
<tr>
<td>3.3.3.1</td>
<td>A1::C3</td>
<td>A2::C4</td>
<td>4.4.4.2</td>
</tr>
<tr>
<td>3.3.3.2</td>
<td>end.DX4</td>
<td>end.DX4</td>
<td>4.4.4.1</td>
</tr>
</tbody>
</table>
Stay Up-To-Date

http://www.segment-routing.net/
https://www.linkedin.com/groups/8266623
https://twitter.com/SegmentRouting
https://www.facebook.com/SegmentRouting/

Segment Routing, Part I - Textbook
Demonstration
eMBB Service
URLLC Service

SA:2001::7
DA:2001:0:0::4:1
NH:SRH
Type:4(SRH)
NH:IPv4|SL:1
Segment List:
[0]:2001:0:0:8:89::A
[1]:2001:0:0:4::1
SA:10.1.1.1
DA:10.2.2.2
Protocol:TCP
TCP Header/Data

SA:2001::7
DA:2001:0:0::4:1
NH:SRH
Type:4(SRH)
NH:IPv4|SL:1
Segment List:
[0]:2001:0:0:8:89::A
[1]:2001:0:0:4::1
SA:10.1.1.1
DA:10.2.2.2
Protocol:TCP
TCP Header/Data

SA:2001::7
DA:2001:0:0::4:1
NH:SRH
Type:4(SRH)
NH:IPv4|SL:1
Segment List:
[0]:2001:0:0:8:89::A
[1]:2001:0:0:4::1
SA:10.1.1.1
DA:10.2.2.2
Protocol:TCP
TCP Header/Data
Service Chaining

- NCS540
- NCS5500
- NCS540
- SRv6
- DC-NFV
- QoS
- DPI
- FW
- IPS
- gN
- NCS540
- NCS5500
- NCS540
- NCS5500
- UP
- NSO
- APP
Thank you
TOMORROW starts here.