

SR-aware SD-WAN

Enabling end-to-end application-responsive networking

Mark Ferreira, Technical Fellow, Bell Business Markets Daniel Voyer, Technical Fellow, Bell Technology

April 2019

Agenda

- Service evolution with SD-WAN
- SR benefits for business services
- SD-WAN-SR overview
- Business SR deployment scenarios
- Bell lab test

Service evolution with SD-WAN

Network adapting to new cloud service delivery model

SD-WAN Edge Intelligence, common architecture for best-in-class app performance and Internet connectivity becomes business critical

Bell Virtual Network Services

SD-WAN business challenges

Well-known facts

- SD-WAN app performance view (E2E SLA) differs from MPLS VPN (PHB)
- Services overlay and infrastructure underlay are not tied together
- Optimizing use of high performance underlay requires tuning at SD-WAN edge
- Difficult to capture additional revenue with customized solutions and services

The opportunity

- Product: innovative services by integrating services and infrastructure
- Network: capture savings provided by technological advances
- Accelerate the pace of transformation

SR makes the Network more flexible and agile

SR benefits for business services

Product priorities – SR alignment

Product directions	SR benefits
Access agnostic Every service over any access	Consistent treatment of traffic Across access types
On-demand / dynamic services Fast service activation / fast service changes	Centralized control Less elements to touch in order to provision service (edge only)
Value added / differentiated services Granular offerings customized to customer	Easy traffic engineering Customized SLA's
Service virtualization Service composition	Service Programming Bring traffic to service

Segment Routing value in delivering Business Services

Bell	Customer
Simplification	Product / feature velocity
Automation / orchestration	On-demand / self-service / granularity
Traffic engineering	SLA / path control
Streaming telemetry	Service assurance
Optical / packet / physical / virtual	Multi-layer
Opaque service identifier	Secured
Automated sub-50msec (TILFA)	E2E network reliability
Monetize entire SP infrastructure	Choice of performance / price options

SD-WAN-SR overview

Per-Flow Policy (PFP) – Per-Flow SR Policy mechanisms

Per-Flow SR Policy

Per-Flow Policy (blue, Node4) @ Node1

- FC=0 → IGP shortest path == 16004
- FC=1 → Per-Destination SR Policy (grey, Node4)

P(blue, Node4) IGP 1.1.1.4/32 shortest path 16004 P(grey, 4) Min-delay path

Per-flow Automated Steering (AS)

AS automatically steers a service route on the policy (C, E):

- C == colour of the service route
- E == next-hop

Application A uses best-effort

- E1 and E2 are SD-WAN edge nodes with address E:1:: and E:2::
- Application A at Site 1 sends a packet to a destination at Site 2
- E1 encrypts packet to site 2 and encapsulate in IPSec packet to E:2::
- E1 uses default PCP marking, packet follows IGP path

Application B requires low latency

Performance monitoring

Enterprise-based

- Send probes with the related Binding SID
- Enhances SD-WAN default mechanisms

SP-based

- The SP can enable per-SR-policy perf monitoring
 - latency
 - loss
- These metrics can be leveraged by SD-WAN controller and provided to the enterprise
- Simple reporting
- Additional data to select which application to steer on which Binding SID
- Embedded OAM

Business SR deployment scenarios

SD-WAN and SR Controllers

SD-WAN Controller

- Manages SD-WAN VPNs, SD-WAN policies, Enterprise Edge
- Policies are enterprise managed

SR Controller (PCE)

- Provides service provisioning for SR policies, Service Provider Edge
- Provider owned and managed

SD-WAN

Controller

Enterprise

Bell Architecture (future 1) – SD-WAN-SR

Enterprise leverages pre-defined transport slices

Bell Architecture (future 2) – SD-WAN-SR

Enterprise request on-demand specific transport SLA (e.g. low latency)

Bell lab test

Bell SD-WAN-SR Lab

Goals to validate

- SD-WAN controller components
- PCE / SR controller components
- Multiple topologies
- Edge SD-WAN (enterprise)
- Edge SR (service provider)
- Path default and latency-optimized

Summary – SD-WAN-SR

- What does this mean for the industry?
 - Underlay differentiation for SDWAN
 - Secured, Automated, Service Assured SLA

