

SRv6

Technology and Industry Status

Clarence Filsfils
Cisco Fellow

Simplicity Always Prevails

LDP

RSVP-TE

-Inter-AS Option A/B/C

MPLS

UDP/VxLAN

NSH

Furthermore with more scale and functionality

Deployments at record-speed

- 100M SRv6 subscribers with 2.5 years of commercial service
- China is pervasively deploying SRv6
- ~100 deployments, 10 with PR

SoftBank	Indosat	China Unicom	MTN Uganda
Iliad	China Telecom	China Bank	Noia
Rakuten	Bell Canada	Cernet2	Line

Rich Eco-System

- 25 HW linerate implementations
 - Cisco Systems, Huawei, Juniper, Nokia, ZTE, Arrcus, Kaloom
 - Broadcom, Barefoot, Intel SmartNIC, Marvell, Mellanox,
 - Spirent, Ixia
 - Multiple Interop Reports
- 11 open-source platforms/ Applications
 - Linux, FD.io VPP, P4, iptables, nftables, snort, SERA, ExaBGP, GoBGP, GoBMP,
 Contiv-VPP

Mature Standardization

- Proposed Standard
 - RFC 8402 SR Architecture
 - RFC 8754 SRv6 DataPlane
 - RFC 8986 SRv6 Network Programming
- Last steps to Proposed Standard RFC
 - ISIS
 - BGP

Rich FCS roadmap

- We started SR-MPLS in 2012, SRv6 in 2017
- From an FCS and deployment viewpoint,
 the core of any SR deployment is at parity SR-MPLS vs SRv6
 - TILFA
 - uLoop Avoidance
 - Flex-Algo: Low-Cost/Low-Delay Slicing
 - PerfMon: Link Latency (for Low-Delay slice)
 - ODN/AS into Flex-Algo
 - Seamless Inter-Domain SRv6 with summarizing and slicing
 - L3VPN (IPv4 and IPv6), IPv4 Internet, IPv6 Internet, PW
 - VPN GW to interconnect "new" SRv6-VPN buildup with legacy VPN

SRv6 - Reminder

johan2011 © 123RF.com

End-to-End Integrity

- End-to-end integrity principle is strictly guaranteed
 - Inner packet is unmodified
 - IPv6 header added at ingress and removed at egress of the domain

Network Program

Network Program

DA = SID1

SRH = SID2, SID3

1st instruction

2nd instruction

3rd instruction

- A network program is a list of instructions (128-bit SRv6 SID)
- An instruction can be bound to any behavior
 - TE/FRR: END, END.X
 - VPN: END.DX, END.DT
- Often a single instruction is enough and is encoded in DA (without SRH)

SRv6 Header

Optimized for HW e.g. FRR, TE & VPN

Optimized for SW e.g. NFV, VM, CN

SRv6 SID – Instruction of the network program

Locator is routed up to the parent of the SID

SRv6 SID – Instruction of the network program

Opaque ID mapped to a behavior applied @ packet

Any behavior can be imagined

SRv6 MicroProgram

uSID1 | uSID2 | ... | uSIDN

- Any instruction can hold a micro-program
- Ultra-scale and minimum MTU overhead
- HW linerate and widespread adoption: Custom and Merchant
 - Facilitate legacy HW reuse
- 100% leverage of SRH and SRv6 Network Program

Deployed Use-cases

- TILFA (99% of the cases) 0 or 1 SID
- Micro-Loop Avoidance (99% of the cases) 0 or 1 SID
- VPN via Best-Effort Inter-Domain slice
 1 SID
- VPN via Low-Delay Inter-Domain slice
 1 SID
- DC VPN with Group-Based Policy 1 SID
- VPN with Service Chain via Inter-Domain slice 2 SID's

VPN over Best-Effort 5G Slice

Network Program: B:0:0:3:V9::

B::/40 locator block is associated with ISIS base algo (Low Cost, Best

VPN with Low-Delay 5G Slice – Flex-Algo Option

Network Program: D:0:0:3:V9::

D::/40 locator block is associated with Low Delay Flex-Algo

Snort Firewall, VPN & Low-Delay Slice

Network Program: D:0:0:2:SNORT:: then D:0:0:3:V9::

D::/40 locator block is associated with Low Delay Flex-Algo

Prefix Summarization

- Back to basic IP routing and summarization
- No BGP inter-AS Option A/B/C

Benefits

- Seamless Deployment
- Hardware Linerate
- Routing Scale: power of IP summarization
- Low MTU Overhead: few SID's
- Optimum Load-balancing
- Simplification
 - No MPLS, no VxLAN, no UDP trick for LB, no RSVP-TE, no LDP, no NSH
- Negligeable IPv6 address space consumption
 - Iliad < 1 billionth of FC/8 space
 - SBB < 1 millionth of current SBB public space

Conclusion

Simplicity Always Prevails

RSVP-TE

-Inter-AS Option A/B/C

MPLS

UDP/VxLAN

NSH

Furthermore with more scale and functionality

Deployment and Eco-system - @ record speed

- 100M live subscribers across > 12 major deployments
 - Softbank, Iliad, China Telecom, LINE corporation, Rakuten, Indosat Ooredoo,
 China Unicom, CERNET2, China Bank, MTN Uganda, and NOIA Network
- Mature industry
 - 25 HW linerate implementations across major vendors:
 Cisco Systems, Huawei, Nokia, Juniper, ZTE, Broadcom, Intel/Barefoot,
 Marvell, Mellanox, Arrcus, Kaloom, Spirent, Ixia
- Proposed Standards IETF RFC
 - RFC8402, RFC8754, RFC8986
- Mature open-source

Stay up-to-date

amzn.com/B01I58LSUO

amazon.com/dp/B07N13RDM9

twitter.com/SegmentRouting

segment-routing.net

facebook.com/SegmentRouting/

linkedin.com/groups/8266623

Thank you!