

Path Tracing (PT)

Pablo Camarillo – <u>pcamaril@cisco.com</u>

Clarence Filsfils, Ahmed Abdelsalam, Sonia Ben Ayed

How did the packet arrive from A to F?

- 3 possible "valid" ECMP paths
 - Any drop?
 - End-to-End Latency homogeneity?

How did the packet arrive from A to F?

- 3 possible "valid" ECMP paths
 - Any drop?
 - End-to-End Latency homogeneity?
- An invalid path is possible
 - Routing or FIB corruptions

How did the packet arrive from A to F?

- 3 possible "valid" ECMP paths
 - Any drop?
 - End-to-End Latency homogeneity?
- An invalid path is possible
 - Routing or FIB corruptions
- 40-year-old unsolved IP problem

Stamping Trajectory in PT Header

- Each transit router records in PT header:
 - Outgoing interface ID
 - Timestamp (with 0.06ms accuracy)
 - Load
- Highly compressed for low MTU overhead
 - Only 3 bytes per hop!
- Implemented at linerate: Reports true packet experience
- Native interworking with legacy nodes
 - Seamless deployment
- Hardware/XR feature with analytics app

Mature Eco-System

- Midpoint PT under deployment IOS XR 7.8.1
 - Cisco 8000 (Silicon One Q200; native SDK)
 - NCS5700 (DNX2 J2; native SDK)
 - ASR9000 (LS)
- Rich Eco-system
 - Cisco, Broadcom, Marvell, +others
 - Linux, FD.io VPP, P4, Wireshark, TCPDUMP
- Ongoing standardization
 - Path Tracing in SRv6 networks (ietf.org)

Use-cases

EDM: ECMP Dataplane Monitoring

- EDM detects
 - An expected ECMP path that drops all its traffic (dataplane corruption)
 - An ECMP path that is not expected (routing/dataplane corruption)
 - Incoherent latency between ECMP paths
- EDM measures
 - End-to-end latency of each path (0.06msec in WAN, 0.2usec in DC)
- Current technique of sending probes from anywhere to anywhere without any PT data requires AI processing of huge data sets

Jitter Analytics

- EDM probing creates an extensive dataset
 - Dataplane Timestamps at each hop
 - 0.06ms accuracy in the WAN (0.2usec in DC)
- Jitter Analytics studies this dataset on a per-node/per-intf
 - Jitter introduced by that node and egress interface
 - Min, Avg, Per50, Per80, Per90...
 - Across different queues
 - Al-based Alerts
- Per-Node Jitter at 0.06msec in live network has never been done before

Conclusion

- Path Tracing is another innovation solving a 40-year problem
- Significant applicability: transport assurance
 - Loss, Latency & Jitter
- Shipping and in deployment
- Rich Eco-System
 - Opensource implementations available
- E2E focus: HW and Analytics

The bridge to possible