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Who I am?

❖ M.Sc degree in Computer Science and PhD in Electronic Engineering at 
University of Rome "Tor Vergata";

❖ Cooperates as a research engineer with:
➢ CNIT (National Inter-University Consortium for Telecommunications);

➢ University of Rome "Tor Vergata";

➢ COMMON NET (Italian Internet Service Provider and Cloud Service Provider);

❖ Main interests focus on Linux kernel networking stack, IPv6 Segment 
Routing (SRv6), eBPF/XDP networking, Software Defined Networking 
(SDN);

❖ Developer and contributor to the SRv6 subsystem of the Linux kernel.
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Quick agenda

❖ Quick journey through the evolution of SRv6 in the Linux kernel:
➢ SRv6 initial support (v4.10 ~ v4.18);
➢ Our contributions from v5.0 up to now;
➢ Kernel space/User space (i.e., iproute2).

❖ What’s next?

❖ Conclusions.
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SRv6 support in Linux kernel v4.10 (1/2)

❖ Support for SRv6 appears in Linux kernel v4.10;

❖ Implement minimal support for processing of 
SR-enabled packets:
➢ Add SRH encapsulation and insertion (seg6 - LWT);
➢ segment Endpoints processing (require SRH and DA = local):

■ Advance the next segment and re-routing;
■ Egress for encap packets: remove of outer IPv6 and SRH;

➢ HMAC support.

❖ Endpoint enabled through per-netns sysctl knobs:
➢ net.ipv6.conf.default.seg6_enabled

net.ipv6.conf.<ifname>.seg6_enabled
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SRv6 support in Linux kernel v4.10 (2/2)

❖ iproute2 extended to:
➢ Support for SRv6 encapsulation (T.Encaps)* and insertion (T.Inserts) **;
➢ Set the source tunnel address;
➢ Handle the HMAC.

❖ Some examples:
➢ To encapsulate an IPv6 packet into an outer IPv6 + SRH:

$ ip ro add 2001:db8::1 encap seg6 mode encap segs fc00::1,fc00::2 dev eth0

➢ To set the SRv6 tunnel source address (once per network namespace):
$ ip sr tunsrc set 2001:2::1
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(*) T.Encaps changed in H.Encaps;  (**) T.Inserts has been removed from RFC 8986



SRv6 support in Linux kernel v4.14 (1/2)
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❖ SRv6 subsystem has been considerably improved, e.g.,:
➢ Support SR-encap of IPv4 packets and L2 ethernet frames (*) in IPv6 + SRH;

❖ Add support for advanced local segment processing (seg6local - LWT):
➢ Implement several “local behaviors” (actions) such as:  SRv6 End.X, End.T, End.DX4, etc;
➢ A local behavior can be configured with different (mandatory) parameters/attributes;

ℹ Packets to be processed must have IPv6 DA != local;
■ Some behaviors do not require SRH at all!

4.10 4.14
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SRv6 support in Linux kernel v4.14 (2/2)
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❖ iproute2 extended to support advanced local segment processing:
➢ set up/destroy local behavior instances;
➢ show instantiated behaviors with all the user-provided parameters/attributes.

❖ Few examples:
➢ Instantiate the SRv6 End behavior for the given SID:

$ ip -6 ro add 2001:db8::1 encap seg6local action End dev eth0

➢ Instantiate the SRv6 End.T behavior for the given SID:
$ ip -6 ro add 2001:db8::1 encap seg6local action End.T table main dev eth0

active SID seg6local
LWT

Behavior to be 
executed

attribute table, valorized with main

4.10 4.14



SRv6 support in Linux kernel v4.16
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❖ IPv6 Segment Routing Header (SRH) support for Netfilter:
➢ Provided as a kernel module;
➢ iptables  CLI integration to set matching rules.

❖ It allows matching packets based on SRH;
➢ Supported match options include:

■ Next header, Header Extension Length, Segment Left, Last Entry, Tag.

❖ It can be combined with other Netfilter extensions to design complex 
filtering chains and actions:
➢ e.g., implementing SRv6 network packet loss monitoring, delay monitoring, etc.

4.10 4.164.14



SRv6 support in Linux kernel v4.18 (1/2)

9

❖ SRv6 local processing enhanced with the new End.BPF action by:
➢ A new BPF program type (BPF_PROG_TYPE_LWT_SEG6LOCAL );
➢ BPF helpers to read/write some fields of the SRH (flags, tag and TLVs)

❖ End.BPF works like the SRv6 End:
➢ SRH must be present;
➢ Advance the next segment.

❖ End.BPF provides an hook for attaching an eBPF program:
➢ It can not make arbitrary reads/writes directly into the packet;
➢ Only some fields of the SRH (flags, tag and TLVs)  can be altered through the helper 

functions.

4.10 4.16 4.184.14



SRv6 support in Linux kernel v4.18 (2/2)
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❖ iproute2 extended to load&attach an eBPF program to End.BPF;

❖ A file object can contains multiple eBPF programs in different sections:
➢ Only one program can be attached to an End.BPF instance.

❖ For example:
➢ Load&attach eBPF program “prog1” contained in “foo_obj.o” for the given SID:

$ ip -6 route add 2001:db8::6 encap seg6local action End.BPF endpoint \

    object foo-obj.o section prog1 dev eth0

File object 
foo-obj.o

eBPF program in 
section prog1

4.10 4.16 4.184.14



SRv6 support in Linux kernel v5.5 and v5.9
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❖ Support for local delivery of decap packets in SRv6 End.DT6 (*);

❖ The Virtual Routing and Forwarding (VRF) subsystem is an enabling key for 
implementing new SRv6 behaviors (**);

❖ The VRF is extended by supporting the new “Strict mode”:
➢ It imposes a one-to-one mapping between a VRF and the associated Routing Table;
➢ Network-namespace aware;
➢ It can be turned on/off by acting on the “strict_mode”  sysctl knob:

■ net.vrf.strict_mode   (disabled by default for legacy purposes).

(*) since kernel v5.5, (**) since kernel v5.9

4.10 4.16 4.18 5.5 5.94.14



SRv6 support in Linux kernel v5.11 (1/3)
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❖ Local processing of SRv6 (seg6local) subjected to heavy lifting:
➢ Improved the management of behavior attributes;
➢ Added support for optional attributes used by behaviors;
➢ Added callbacks for customizing creation/destruction of behaviors.

❖ Add support for SRv6 End.DT4 behavior:
➢ It decaps inner IPv4 packets and performs lookup into a given Routing Table (RT):

■ Does not strictly require SRH.
➢ It leverages the VRF to force the routing lookup into the associated RT:

■ VRF “strict_mode” must be turned on!

❖ Enhance the SRv6 End.DT6 operating mode:
➢ Legacy mode (providing RT) or using a VRF as in the End.DT4 case.

4.10 4.16 4.18 5.5 5.9 5.114.14



SRv6 support in Linux kernel v5.11 (2/3)
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❖ A high-level view on SRv6 End.DT4 behavior processing:

4.10 4.16 4.18 5.5 5.9 5.114.14
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SRv6 support in Linux kernel v5.11 (3/3)

14

❖ iproute2 extended to support both SRv6 End.DT4 and End.DT6 (VRF 
mode);

❖ iproute2 does not require any change to support optional attributes
for SRv6 local behaviors;

❖ For example, to instantiate an SRv6 End.DT4 behavior for a given SID:
$ sysctl -wq net.vrf.strict_mode=1
$ ip link add name vrf-100 type vrf table 100
[...] set the target device of the VRF connecting with the host [...]
$ ip -6 r a 2001:db8::d4 encap seg6local action End.DT4 vrftable 100 dev vrf-100

RT associated with 
VRF vrf-100

4.10 4.16 4.18 5.5 5.9 5.114.14



SRv6 support in Linux kernel v5.13 (1/2)
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❖ Add counters support for SRv6 local processing;

❖ For each local behavior instance they count:
➢ Total number of correctly processed packets;
➢ Total amount of traffic (in bytes) correctly processed;
➢ Total number of packets NOT correctly processed.

❖ Counters are very interesting for:
➢ Network monitoring purposes;
➢ Checking whether a behavior is triggered, works as expected or not;
➢ Troubleshooting purposes.

❖ Counters can be enabled on a behavior instance during the setup phase.

4.10 4.16 4.18 5.5 5.9 5.11 5.134.14



SRv6 support in Linux kernel v5.13 (2/2)
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❖ By extending iproute2, each SRv6  behavior instance can be configured 
to make use of counters;

❖ SRv6 counters supported for any SRv6 local behavior (seg6local) as 
follows:

➢ Add a new SRv6 End behavior instance with the given SID and counters turned on: 
$ ip -6 route add 2001:db8::1 encap seg6local action End count dev eth0

➢ Per-behavior counters can be shown by adding “-s” to the iproute2  CLI, e.g.:
$ ip -s -6 route show 2001:db8::1
2001:db8::1 encap seg6local action End packets 0 bytes 0 errors 0 dev eth0

count is an optional attribute

4.10 4.16 4.18 5.5 5.9 5.11 5.134.14

counters (aka statistics)



SRv6 support in Linux kernel v5.14
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❖ Add support for SRv6 End.DT46 behavior:
➢ With End.DT4 and End.DT6 is not possible to create SRv6 tunnel carrying both IPv4 and 

IPv6.

❖ End.DT46 decaps both IPv4/IPv6 traffic and routes traffic using a VRF:
➢ It reuses the core implementation of End.DT4 and End.DT6 (VRF mode);
➢ The VRF “strict_mode” must be enabled.

❖ Performance tests show no degradation in performance when DT46 is 
used w.r.t. End.DT4/6:
➢ End.DT46 greatly simplifies the setup and operations of SRv6 VPNs.

❖ iproute2 updated to support the new SRv6 End.DT46 behavior:
➢ similar CLI and configuration required for setting End.DT4 and End.DT6 (VRF mode).

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.144.14



SRv6 support in Linux kernel v5.15
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❖ Add optional Netfilter hooks to SRv6 processing;

❖ Netfilter hooks useful to track (conntrack) both outer flows and inner 
flows, i.e., flows carried by SRv6 packets.

❖ By default, Netfilter hooks for SRv6 are disabled:
➢ It can impact on performance when turned on;
➢ sysctl (system-wide) toggle for enabling LWT tunnel netfilter hooks:

■ net.netfilter.nf_hooks_lwtunnel

➢ NOTE: Disabling the nf_hooks_lwtunnel  requires kernel reboot. 

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.154.14



SRv6 support in Linux kernel v6.0 (1/2)
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❖ Add support for SRv6 Headend Reduced:
➢ H.Encaps.Red reduced version of H.Encaps.
➢ H.L2Encaps.Red reduced version of H.L2Encaps.

❖ The H.(L2)Encaps.Red reduces the length of the SRH by:
➢ Excluding the first segment (SID) from the SID List carried by SRH;
➢ Pushing the excluded SID directly into the IPv6 DA.

❖ The H.(L2)Encaps.Red can avoid the SRH at all if the SRv6 policy contains 
only one SID.

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.04.14
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SRv6 support in Linux kernel v6.0 (2/2)
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❖ iproute2 updated to support both H.Encaps.Red and H.L2Encaps.Red;

❖ Two new mode are available to encap seg6 in iproute2 CLI:
➢ encap.red  for SRv6 H.Encaps.Red behavior;
➢ l2encap.red  for SRv6 H.L2Encaps behavior.

❖ Same iproute2 CLI syntax to perform reduced encaps, for example:
➢ Perform a reduced encapsulation of an IPv4 packet into an outer IPv6 + SRH

$ ip -4 ro a 10.0.0.2 \
encap seg6 mode encap.red segs fc00::1,fc00::2 dev eth0

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.04.14

SID List is transparently 
reduced by the Linux kernel

H.Encaps.Red



SRv6 support in Linux kernel v6.1 (1/2)
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❖ Some SRv6 scenarios may require large number of SIDs;

❖ Reducing the size of a SID List is useful to:
➢ Minimize the impact on MTU; enable SRv6 on legacy HW with limited processing power.

❖ Kernel v6.1 introduces the NEXT-C-SID (aka uSID) [1] mechanism for SRv6:
➢ Efficient representation (compression) of the SID LIst;

■ Several SRv6 segments can be encoded within a single 128-bit SID.

➢ NEXT-C-SID mechanism relies on the “flavors” framework (RFC 8986):
■ Additional operations that can modify/extend existing behaviors.

❖ SRv6 End behavior is extended with the NEXT-C-SID flavor support.
[1] - https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.0 6.14.14

https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression


❖ iproute2 extended to support flavors framework;

❖ New “flavors” attribute to set up NEXT-C-SID compression on SRv6 End:
➢ Nested sub-flavors attributes are allowed to further configure the behavior;

❖ NEXT-C-SID flavor for SRv6 End behavior can be configured using optional 
user-provided sub-flavors attributes:
➢ lblen, i.e., attribute for Locator-Block length in bits ( > 0 and evenly div by 8);
➢ nflen,  i.e., attribute for Locator-Node Function length in bits ( > 0 and evenly div by 8).

❖ For example:
➢ $ ip -6 ro a fc00:0:0100:0200::/48 encap seg6local action End \

   flavors next-csid lblen 32 nflen 16 dev eth0

SRv6 support in Linux kernel v6.1 (2/2)

22

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.0 6.14.14

flavors attribute accepts nested attributes nested attributes are optionals

Locator-Block Locator-Node Function



SRv6 support in Linux kernel v6.3 (1/2)
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❖ In some SRv6 scenarios we would like to:
➢ Remove the SRv6 policy (i.e., the SID List) as we do not need it anymore;
➢ Keep the IPv{4,6}-in-IPv6 encapsulation for traffic to be processed;

❖ Removing the SRH when all the SIDs have been processed aims to:
➢ Reduce the MTU at some point in the network; enabling legacy HW with limited 

processing power; 

❖ Kernel v6.3 introduces the Penultimate Segment Pop (PSP) flavor:
➢ The PSP reuses the “flavor” framework introduced with NEXT-C-SID patchset;
➢ The PSP flavor allows an SRv6 End* behavior to pop the SRH on the penultimate SR 

Endpoint node listed in the SID List.

❖ SRv6 End behavior is extended with the PSP flavor support.

4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.0 6.1… 6.3



SRv6 support in Linux kernel v6.3 (2/2)
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4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.0 6.1… 6.3

❖ No need to further extend iproute2 to support the PSP flavor;
➢ PSP flavor capability was already introduced with the NEXT-C-SID patchset;

❖ Reuse the “flavors” attribute to set up the PSP flavor on SRv6 End;

❖ For example:
➢ $ ip -6 ro a 2001:db8::1 encap seg6local action End \

   flavors psp dev eth0

❖ A PSP-enabled SRv6 End behavior instance applies:
➢ PSP processing only when deployed on the SR penultimate node (Segment Left = 1).
➢ “standard” End processing (ignoring the PSP flavor at all) in all other cases.



SRv6 support in Linux kernel v6.6 (1/2)
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❖ In some SRv6 scenarios with large number of SIDs, we would like to:
➢ Leverage the compressed SID List (NEXT-C-SID mechanism);
➢ Forward processed packet using given L3 adjacencies (like End.X).

❖ NEXT-C-SID is combined with End.X, this enables arbitrary TE paths in 
SRv6 domains also when using compressed SID lists

❖ Kernel v6.6 introduces the NEXT-C-SID flavor for End.X behavior:
➢ Reuse the “flavor” framework introduced with NEXT-C-SID patchset;
➢ Enable the End.X behavior to use the NEXT-C-SID compression mechanism.

❖ SRv6 End.X behavior is extended with the NEXT-C-SID flavor support.

4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.0 6.1 6.3… 6.6



SRv6 support in Linux kernel v6.6 (2/2)
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❖ No need to extend iproute2 to support the NEXT-C-SID flavor in End.X;
➢ The flavor capability was already introduced with the NEXT-C-SID patchset.

❖ The “flavors” attribute is reused to set up the NEXT-C-SID on SRv6 End.X;
➢ Nested sub-flavors attributes are allowed to further configure the behavior.

❖ For example:
➢ $ ip -6 ro a 2001:db8::1 encap seg6local action End.X nh6 fd00::1 \

   flavors next-csid lblen 48 nflen 16 eth0

❖ A NEXT-C-SID-enabled SRv6 End.X behavior:
➢ if the uSID list is not empty: uSID “next” processing and forward to an L3 adjacency;
➢ if the uSID list is empty: “standard” End.X processing .

4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.0 6.1 6.3… 6.6



What’s next?
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❖ We are still working to:
➢ Introduce new SRv6 features into the kernel;
➢ Cooperate maintaining the SRv6 subsystem, e.g. bug fixing, performance tests, etc.

❖ (Some of) Upcoming “desidered” features will:
➢ Improve Observability:

■ Update the SRv6 subsystem to inform the user of the reasons why a packet has 
been dropped, e.g. kfree_skb_dreason();

■ Add counters support to SRv6 HeadEnd behaviors (i.e.: seg6).
➢ Enhanced  Capabilities:

■ enable user-provided Traffic Class, Hop Limit in the outer IPv6 header on H.Encaps:
✓ Or … decide when Traffic Class should be inherited from inner Packet!
✓ Useful to propagate ECN bits from inner packets to outer IPv6 + SRH.

■ Set the tunnel source address (outer IPv6 SA) on a per-tunnel basis (H.Encaps).



Conclusions

28

❖ SRv6 support enhanced considerably across the Linux kernel releases;
➢ We heavily contributed to add new features and fix bugs.

❖ We extended the VRF and SRv6 subsystems by adding key features, e.g.:
➢ “Strict mode” to 1:1 map between a VRF with its RT, used by SRv6 End.DT* behaviors;
➢ Optional attributes to make possible complex SRv6 behavior configurations;
➢ Observability with  SRv6 counters.

❖ Our work was/is driven by both research and real use-cases needs:
➢ Providing solution for Multi-tenant IPv4/IPv6 VPNs, e.g.: End.DT4/6/46:
➢ Optimizing DC network utilization Traffic Engineering for AI distributed training;
➢ Avoiding SRH overhead whenever possible, e.g.: with reduced encaps;
➢ SID compression for supporting SRv6 legacy HW and reducing overhead, i.e., NEXT-C-SID.

❖ Very active on SRv6: for suggestions/ideas, please drop us a message!



Thank you for your attention!
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(some) Gaps and Limitations
in 

SRv6 Linux subsystem
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The evolution of SRv6 Networking Model
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A lot of work has been done, but there are still problems and limits in using 
SRv6 in Linux.
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Linux SRv6 End.X implementation (1/2)
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❖ SRv6 End.X behavior:
➢ SRv6 instantiation of an Adjacency SID [1], main purpose is for traffic-engineering policies.
➢ A node has N link with its neighbours and traffic needs to be steered on a specific link.

❖ Currently SRv6 End.X implementation presents a limit (by design):
➢ Cannot use link-local addresses to steer traffic on a specific link.
➢ During the years, people complains about this limitation (mailing list/private inbox).

❖ A initial solution to this issue was proposed years ago [2]:
➢ Add to the End.X behavior a user-provided outgoing interface (oif);

■ Always consider the outgoing interface (oif) while looking up the nexthop.
➢ Unfortunately, this change broke perfect legitimate configurations!

❖ Patch [2] was not applicable at that time. So, what can we do nowadays?

[1] - https://datatracker.ietf.org/doc/html/rfc8986#name-endx-l3-cross-connect
[2] - https://patchwork.kernel.org/project/netdevbpf/patch/20201015082119.68287-1-rejithomas@juniper.net/

https://datatracker.ietf.org/doc/html/rfc8986#name-endx-l3-cross-connect
https://patchwork.kernel.org/project/netdevbpf/patch/20201015082119.68287-1-rejithomas@juniper.net/


Linux SRv6 End.X implementation (2/2)
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❖ With the support for optional attributes in the SRv6 Endpoints:
➢ Differentiation between mandatory attributes and optional ones;
➢ A behavior could be configured in different ways, depending on provided attributes;

❖ SRv6 End.X implementation limit could be overcome:
➢ Considering what has been proposed in (rejected) patch [2], but with some changes, e.g.:

■ oif is an optional attribute BUT is considered mandatory when next-hop address 
(nh6) is a link-local one;

■ oif, if provided, can also be used for non link-local addresses (forcing lookup to 
consider also that interface);

■ When oif is not provided, End.X processing logic is left unchanged (legacy support).

❖ The same approach could used for the other End DX4/DX6.

[1] - https://datatracker.ietf.org/doc/html/rfc8986#name-endx-l3-cross-connect
[2] - https://patchwork.kernel.org/project/netdevbpf/patch/20201015082119.68287-1-rejithomas@juniper.net/

https://datatracker.ietf.org/doc/html/rfc8986#name-endx-l3-cross-connect
https://patchwork.kernel.org/project/netdevbpf/patch/20201015082119.68287-1-rejithomas@juniper.net/


Uneven Routing Error Handling in SRv6 End (1/2)
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❖ SRv6 End* processes (in some way) packets and then routes them;

❖ End/.X/.T and End.DX6/DT6 route packet w.r.t. the outer/inner IPv6 DA:
➢ They all rely on the same routing “helper” function e.g., seg6_nexthop_lookup() ;

❖ End.DX4/End.DT4 routes (decap) packet considering the inner IPv4:
➢ They all rely on the same routing “helper” function e.g., ip_route_input() ;

❖ However… depending on the Endpoint and the processed protocol, 
routing errors are handled differently…
➢ IPv4 routing issues are immediately handled and SRv6 processing stops returning an 

error to the SRv6 subsystem :-)
➢ IPv6 routing errors are not directly handled :-( 

■ Instead, processing continues and dst_input() is called: dst->input() callback will 
decide the fate of the packet;

■ In case of routing error, packet are dropped but dst->input() returns 0: consumed!



Uneven Routing Error Handling in SRv6 End (2/2)
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❖ Uneven routing error handling (by design) in End* lead to some issues:
➢ hides routing only IPv6 failures from the SRv6 network subsystem;
➢ preventing aggregation of statistics on routing errors and per-behavior increasing error 

counters (again only for IPv6).

❖ We need to change the routing error handling design:
➢ SRv6 End* dealing with IPv6 routing errors should return error codes to the SR 

subsystem;
➢ Release resources as soon as the routing error is happened, e.g.: release the skb

❖ We would improve the SRv6 route error handling:
➢ By checking the return code of seg6_lookup_nexthop(). When an error is returned:

■ Release the skb
■ Report the code to the SRv6 subsystem

➢ Visibility of routing issues (for IPv6) in behaviors counter statistics.

❖ We have a patch ready to be sent for improving all of this! 



Flawed SRv6 config leading to stack overflow (1/3)
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❖ SRv6 behaviors alter packets depending on business logic:
➢ encap/decap logic “exposes” the IPv{4,6} address on which routing lookup is performed;

■ Such addresses could “trigger” other cascading SRv6 behaviors!
➢ Processing is carried out through special LWT types called seg6 and seg6local.

❖ A (wrong) SRv6 config leading to kernel stack overflow was recently 
reported in the mailing list [1]:
➢ It breaks the SRv6 programming model, where a SID provides both topological and 

service information;

❖ Such config is flawed, but presents a pathological issue worth noting:
➢ It essentially creates a loop between two (different) LWTs input processing functions 

calling each other!
➢ You can find my detailed explanation in [2].

[1] - https://lore.kernel.org/netdev/2bc9e2079e864a9290561894d2a602d6@akamai.com/T/
[2] - https://lore.kernel.org/netdev/20241120181201.594aab6da28ec54d263c9177@uniroma2.it/

https://lore.kernel.org/netdev/2bc9e2079e864a9290561894d2a602d6@akamai.com/T/
https://lore.kernel.org/netdev/20241120181201.594aab6da28ec54d263c9177@uniroma2.it/
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❖ In the same host:
1. A plain IPv4 packet with DA=X  is encapsulated into an SRv6 packet with IPv6 

DA=Y, e.g.: 
a. $ ip ro add X encap seg6 mode encap segs Y dev eth0 vrf vrf9

2. The produced SRv6 packet (DA=Y) is then decapsulated (within the same VRF), 
retrieving back the carried out plain IPv4 packet with DA=X, e.g.:
a. $ ip ro add Y encap seg6local action End.DT4 vrftable 1009 dev 

vrf9
(table 1009 is bound to vrf9)

❖ And here we have a loop:
➢ (2) will call (1), which in turn will call (2), and so on.

❖ We have no control over a misconfigured system, but how can we work to 
mitigate this situation?
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❖ We've come up with some ideas on how to deal with the “loop” issue:
➢ All fundamentally based on tracking (e.g., count) how many times a packet is handled by a 

LWT tunnel processing function (no matter of LWT type);
➢ LWT processing counter operates on a per-packet basis;
➢ When the counter exceeds a given value, the packet is dropped avoiding the stack overflow.

❖ How can we (try to) overcome this issue?
➢ Different approaches to relate  a LWT processing counter with a packet:

■ Store the counter in skb->cb[];
■ Store a counter in the skb directly;
■ Create a new type of skb extensions to store the counter.

➢ We have implemented a PoC using a new skb extension for counting how many times a 
packet has been processed by LWT input/output functions.

❖ All have pros and cons, discuss about them together!
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❖ What is SRv6 H.L2Encaps?
➢ Encapsulates Ethernet frames within SRv6 packets;
➢ Facilitates Layer 2 Ethernet VPN (EVPN);
➢ Used in combination with SRv6 Endpoint Decapsulation of L2 and X-connect (DX2);

❖ Implemented in Linux by leveraging Lightweight Tunnel (LWT - seg6):
➢ LWTs are bound to Layer 3 protocols as IPv4 or IPv6!

❖ But… we need to encapsulate a generic Ethernet frame !?
➢ H.L2Encaps can not encapsulate ethernet frames with generic ethernet type protocols;
➢ … and even in the case of IPv4 and IPv6 layers, need some tricks to make it “work”, e.g.:

■ “playing” with static ARP/NDP;
■ using bridge and dummy interfaces to emulate a quasi-pseudo-wire interface on 

encap node
■ spoofing the destination mac address on encap node or rewrite che mac address in 

the encap and decap nodes accordingly.
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❖ How can we overcome H.L2Encaps limitation (build upon LWT)?

❖ Probability creating a pseudo-wire virtual ethernet device…
➢ A new network device type “seg6” which is capable of encapsulating ethernet frames:

■ Add outer IPv6 + SRH (or performs a reduced encapsulation);
■ SID List to be pushed defined during the device setup;

❖ And what about the decap?
➢ We can “re-use” the End.DX2 for decapsulating and forwarding packets;
➢ It’s worth noting that SID are usually not bound to any local address/interface:

■ We cannot leverage the input datapath;
➢ We could intercept IPv6 + SRH traffic using netfilter callbacks and then process the inner 

L2 frame accordingly.

❖ But…what about creating a new TC action for implementing the SRv6 
H.L2Encaps :-) ?


