TOR VERGATA CINUL S (<

COMMON NET

"

SRv6 in the Linux kernel

Andrea Mavyer

University of Rome Tor Vergata / CNIT / COMMON NET

Linux Netdev 0x19 - Zagreb, Croatia

5 = N
Who | am: ﬂ CIe (ﬁl

% M.Sc degree in Computer Science and PhD in Electronic Engineering at
University of Rome "Tor Vergata",

% Cooperates as a research engineer with:
> CNIT (National Inter-University Consortium for Telecommunications);
> University of Rome "Tor Vergata",

> COMMON NET (Italian Internet Service Provider and Cloud Service Provider);

% Main interests focus on Linux kernel networking stack, IPv6 Segment
Routing (SRv6), eBPF/XDP networking, Software Defined Networking
(SDN);

< Developer and contributor to the SRv6 subsystem of the Linux kernel.

Quick agenda] cnit @

% Quick journey through the evolution of SRv6 in the Linux kernel:

> SRv6 initial support (v4.10 ~ v4.18);
> Our contributions from v5.0 up to now;
> Kernel space/User space (i.e., iproute?2).

% What's next?

% Conclusions.

SRv6 support in Linux kernel v4.10 (1/2)

cnit @

p 10)
% Support for SRv6 appears in Linux kernel v4.10; Segment
L. . Endpoint
< Implement minimal support for processing of processing
SRH
SR-enabled packets:
> Add SRH encapsulation and insertion (seg6 - LWT); input seg6 (LWT)

> segment Endpoints processing (require SRH and DA = local):

m Advance the next segment and re-routing;

m Egress for encap packets: remove of outer IPv6 and SRH; routing forward
> HMAC support.

% Endpoint enabled through per-netns sysctl knobs:

prerouting
> net.ipvé6.conf.default.seg6 enabled
net.ipv6.conf.<ifname>.segb6b enabled
NIC
driver

e

SRv6 support in Linux kernel v4.10 (2/2)] (C]nlftlll (ﬁJ

p 410)

R

* iproute2 extended to:

> Support for SRv6 encapsulation (T.Encaps)* and insertion (T.Inserts) **;
> Set the source tunnel address;
> Handle the HMAC.

% Some examples:

> To encapsulate an IPv6 packet into an outer IPv6 + SRH:
$ ip ro add %OOl:db8::} encap segb mode encap Ssegs EcOO::l,chO::% dev ethO

~
Dst of packets that segs ~encap mode Segments belonging to
will be encap LWT the SID List

> To set the SRv6 tunnel source address (once per network namespace):
$ ip sr tunsrc set 2001:2::1

(*) T.Encaps changed in H.Encaps; (**) T.Inserts has been removed from RFC 8986

SRv6 support in Linux kernel v4.14 (1/2)

cnit @

2 > 2

% SRv6 subsystem has been considerably improved, e.g.,:
> Support SR-encap of IPv4 packets and L2 ethernet frames (*) in IPv6 + SRH;

< Add support for advanced local segment processing (seg6local - LWT):

> Implement several “local behaviors” (actions) such as: SRv6 End.X, End.T, End.DX4, etc;
> Alocal behavior can be configured with different (mandatory) parameters/attributes;

i Packets to be processed must have IPv6 DA != |ocal;

m Some behaviors do not require SRH at all! inout seg6local
npu (LWT)
routing seg6 (LWT)
forward

(*) Only support ethernet frames with IPv4/IPv6 as L3 proto.

SRv6 support in Linux kernel v4.14 (2/2) j (C]nlftlll (ﬁj

2 > 2

% 1iproute2 extended to support advanced local segment processing:

> setup/destroy local behavior instances;
> show instantiated behaviors with all the user-provided parameters/attributes.

% Few examples:

> Instantiate the SRv6 End behavior for the given SID:
$ ip -6 ro add 2001:db8::1 encap seg6local action End dev ethO

N ~ J N J K\F/
active SID segb6local Behavior to be
LWT executed

> Instantiate the SRv6 End.T behavior for the given SID:
S ip -6 ro add 2001:db8::1 encap seg6local action End.T table main dev ethO

k___Y___J

attribute table, valorized with main

SRv6 support in Linux kernel v4.16] mmful: (ﬁ

) > > >
% IPv6 Segment Routing Header (SRH) support for Netfilter:

> Provided as a kernel module;
> iptables CLI integration to set matching rules.

< It allows matching packets based on SRH;

> Supported match options include:
m Next header, Header Extension Length, Segment Left, Last Entry, Tag.

% It can be combined with other Netfilter extensions to design complex

filtering chains and actions:
> e.g., implementing SRv6 network packet loss monitoring, delay monitoring, etc.

SRv6 support in Linux kernel v4.18 (1/2) %J (C]ﬂl[ilt (ﬂj

2 > > > 2

% SRvé6 local processing enhanced with the new End.BPF action by:
> A new BPF program type (BPF_PROG TYPE LWT SEG6LOCAL)
> BPF helpers to read/write some fields of the SRH (flags, tag and TLVs)

% End.BPF works like the SRv6 End;

> SRH must be present;
> Advance the next segment.

% End.BPF provides an hook for attaching an eBPF program:
> It can not make arbitrary reads/writes directly into the packet;
> Only some fields of the SRH (flags, tag and TLVs) can be altered through the helper
functions.

SRv6 support in Linux kernel v4.18 (2/2)

cnit @

m

> > > 2

iproute2 extended to load&attach an eBPF program to End.BPF,;

A file object can contains multiple eBPF programs in different sections:
> Only one program can be attached to an End.BPF instance.

For example:
> Load&attach eBPF program “prog1” contained in “foo_obj.0” for the given SID:

S ip -6 route add 2001:db8::6 encap segblocal action End.BPF endpoint \

object foo-obj.o section progl dev ethO
J

N J
Y Y

File object eBPF program in
foo-obj.o section progl

SRv6 support in Linux kernel v5.5 and v5.9 j CILE (ﬁ

) > > > D> 55 > 59)
% Support for local delivery of decap packets in SRv6 End.DT6 (*);

% The Virtual Routing and Forwarding (VRF) subsystem is an enabling key for
implementing new SRv6 behaviors (+*);

% The VRF is extended by supporting the new “Strict mode”:
> Itimposes a one-to-one mapping between a VRF and the associated Routing Table;

> Network-namespace aware;
> |t can be turned on/off by acting on the “strict mode” sysctl knob:
m net.vrf.strict mode (disabled by default for legacy purposes).

(*) since kernel v5.5, (**) since kernel v5.9

SRv6 support in Linux kernel v5.11 (1/3)

cnit @

m

3 > > > > 55 > 59 > st

% Local processing of SRv6 (seg6local) subjected to heavy lifting:
> Improved the management of behavior attributes;
> Added support for optional attributes used by behaviors;
> Added callbacks for customizing creation/destruction of behaviors.

< Add support for SRv6 End.DT4 behavior:

> It decaps inner IPv4 packets and performs lookup into a given Routing Table (RT):
m Does not strictly require SRH.

> |t leverages the VRF to force the routing lookup into the associated RT:
m VRF “strict mode” must be turned on!

< Enhance the SRv6 End.DT6 operating mode:
> Legacy mode (providing RT) or using a VRF as in the End.DT4 case.

SRv6 support in Linux kernel v5.11 (2/3)] CINLLE (ﬁJ

) > > > > 55 > 59) 511
% A high-level view on SRv6 End.DT4 behavior processing:

e T
(rule) fc00::/16\lookup 90 4

: localsid table (90):
L seg6local SID 9 Action

‘r;“i“”g E"d-DT“ve_t?E'E 100 | c00:21:6004 | apply End.DT4 vrftable 100
- Vi-100 (VRE) T VRF table (100}

Rrergtiing VRD) SiD 4
! 9 _____ o _1.10.0.0.0/24 | forward to dev eth_t100
! eth 1100

NIC =
! (target)
i |
IPv6 ;
DAZic00:21-6004 | SRH | IPv4 | Payload IPv4 | Payload e processing step

SRv6 support in Linux kernel v5.11 (3/3) j (C]ﬂl[ilt (ﬁ!

> > > > 55 > 59 > st

iproute2 extended to support both SRv6 End.DT4 and End.DT6 (VRF
mode);

iproute2 does not require any change to support optional attributes
for SRv6 local behaviors;

For example, to instantiate an SRv6 End.DT4 behavior for a given SID:

$ sysctl -wg net.vrf.strict mode=1
$ ip link add name vrf-100 type vrf table [100
[...] set the target device of the VRF connecting with the host [.].]

S ip -6 r a 2001:db8::d4 encap segblocal action End.DT4 vrftable |100|dev vrf-100

\ J
Y

RT associated with
VRF vrf-100

SRv6 support in Linux kernel v5.13 (1/2)

cnit @

m

> > > > 55 > 59 > st 513

Add counters support for SRv6 local processing;

For each local behavior instance they count:

> Total number of correctly processed packets;
> Total amount of traffic (in bytes) correctly processed,;
> Total number of packets NOT correctly processed.

Counters are very interesting for:

> Network monitoring purposes;
> Checking whether a behavior is triggered, works as expected or not;
> Troubleshooting purposes.

Counters can be enabled on a behavior instance during the setup phase.

SRv6 support in Linux kernel v5.13 (2/2) j (C]ﬂl[ilt (ﬁJ
3 > > > > 55 > 59 > 511 > 513 3

% By extending iproute2, each SRv6 behavior instance can be configured
to make use of counters;

% SRv6 counters supported for any SRv6 local behavior (seg6local) as
follows:

> Add a new SRv6 End behavior instance with the given SID and counters turned on:
S ip -6 route add 2001:db8::1 encap segblocal action End count dev ethO

——

count is an optional attribute

> Per-behavior counters can be shown by adding “-s” to the iproute2 CLI, e.g..
$ ip| -s|-6 route show 2001:db8::1
2001:db8::1 encap segblocal action End

packets 0 bytes 0 errors 0 dev ethO

counters (aka statistics)

SRv6 support in Linux kernel v5.14 %J mmful: (ﬁ

3 > > > D55 > 59 > 511) 513 > 54)

% Add support for SRv6 End.DT46 behavior:

> With End.DT4 and End.DT6 is not possible to create SRv6 tunnel carrying both IPv4 and
IPv6.

< End.DT46 decaps both IPv4/IPv6 traffic and routes traffic using a VRF:

> |treuses the core implementation of End.DT4 and End.DT6 (VRF mode);
> The VRF “strict mode” must be enabled.

% Performance tests show no degradation in performance when DT46 is

used w.r.t. End.DT4/6:
> End.DT46 greatly simplifies the setup and operations of SRv6 VPNSs.

% iproute2 updated to support the new SRv6 End.DT46 behavior:
> similar CLI and configuration required for setting End.DT4 and End.DT6 (VRF mode).

s

SRv6 support in Linux kernel v5.15

] cnit @

> > > D 55 > se > st) 53) 514 > 515)

Add optional Netfilter hooks to SRv6 processing;

Netfilter hooks useful to track (conntrack) both outer flows and inner
flows, i.e., flows carried by SRv6 packets.

By default, Netfilter hooks for SRv6 are disabled:
> |t can impact on performance when turned on;

> sysctl (system-wide) toggle for enabling LWT tunnel netfilter hooks:
m net.netfilter.nf hooks lwtunnel

> NOTE: Disabling the nf hooks lwtunnel requires kernel reboot.

SRv6 support in Linux kernel v6.0 (1/2)] (C]nlftlll (ﬁJ

). > > > D> 55 > 59 > sl > 53) 5t > 545) 6o g
< Add support for SRv6é Headend Reduced:

> H.Encaps.Red reduced version of H.Encaps.
> H.L2Encaps.Red reduced version of H.L2Encaps.

% The H.(L2)Encaps.Red reduces the length of the SRH by:

> Excluding the first segment (SID) from the SID List carried by SRH;
> Pushing the excluded SID directly into the IPv6 DA.

% The H.(L2)Encaps.Red can avoid the SRH at all if the SRv6 policy contains

only one SID.
H.Encaps (policy with 1 SID - no other info in SRH) H.Encaps.Red (policy with 1 SID)
IPv6 SRH IPv6
DA=fc00:21:6004 | SIDList = fc00:21::6004 | " v4/6 | Payload DA=fc00:21::6004 | 'FV4/6 | Payload
_ J . J
N . v
40 + 24 bytes redundant info 40 bytes

SRv6 support in Linux kernel v6.0 (2/2) J (C]ﬂl[ilt (ﬁl

) > > » D> 55 > 59 > sl > 53) 5t > 545) 6o g
% iproute2 updated to support both H.Encaps.Red and H.L2Encaps.Red,;

% Two new mode are available to encap seg6 in iproute2 CLI:

> encap.red for SRv6 H.Encaps.Red behavior;
> 12encap.red for SRv6 H.L2Encaps behavior.

< Same iproute2 CLI syntax to perform reduced encaps, for example:

> Perform a reduced encapsulation of an IPv4 packet into an outer IPv6 + SRH
$ ip -4 ro a 10.0.0.2 \
encap seg6 mode encap.red segs fc00::1,fc00::2 dev ethO
N \ J
H.Encaps.Red SID List is transparently
reduced by the Linux kernel

SRv6 support in Linux kernel v6.1 (1/2) J (C]nlftlll (ﬁJ

) > > > D> 55 > 59) 51> 58) 514 > 515) 60) 61 g
% Some SRv6 scenarios may require large number of SIDs;

% Reducing the size of a SID List is useful to:
> Minimize the impact on MTU; enable SRv6 on legacy HW with limited processing power.

% Kernel v6.1 introduces the NEXT-C-SID (aka uSID) [1] mechanism for SRvé:

> Efficient representation (compression) of the SID Llst;
m Several SRv6 segments can be encoded within a single 128-bit SID.

> NEXT-C-SID mechanism relies on the “flavors” framework (RFC 8986):
m Additional operations that can modify/extend existing behaviors.

>

SRv6 End behavior is extended with the NEXT-C-SID flavor support.

[1] - hitps://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression

https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression

SRv6 support in Linux kernel v6.1 (2/2)] (C]nlftlll (ﬁJ

) > > > D> 55 > 59) 51> 58) 514 > 515) 60) 61 g
% iproute2 extended to support flavors framework;

% New “flavors” attribute to set up NEXT-C-SID compression on SRv6 End:
> Nested sub-flavors attributes are allowed to further configure the behavior;

% NEXT-C-SID flavor for SRv6 End behavior can be configured using optional

user-provided sub-flavors attributes:

> 1blen, i.e., attribute for Locator-Block length in bits (> 0 and evenly div by 8);
> nflen, i.e., attribute for Locator-Node Function length in bits (> 0 and evenly div by 8).

o For' examp|e: Locator-Block Locator-Node Function

> S ip -6 ro a [chO:O:;OlOO:OZOO::/48 encap seg6local action End \

flavors next-csid !lblen 32!|nflen 16||dev ethO

—— flavors attribute accepts nested attributesT/ nested attributes are optionals

SRv6 support in Linux kernel v6.3 (1/2) J (C]nlftlll (ﬁ

) > > D55 > 59 > st > 51 >S4 > a5 > 60 > 61> 63 g

% In some SRv6 scenarios we would like to:
> Remove the SRv6 policy (i.e., the SID List) as we do not need it anymore;
> Keep the IPv{4,6}-in-IPv6 encapsulation for traffic to be processed;

% Removing the SRH when all the SIDs have been processed aims to:

> Reduce the MTU at some point in the network; enabling legacy HW with limited
processing power;

% Kernel v6.3 introduces the Penultimate Segment Pop (PSP) flavor:

> The PSP reuses the “flavor” framework introduced with NEXT-C-SID patchset;
> The PSP flavor allows an SRv6 End* behavior to pop the SRH on the penultimate SR
Endpoint node listed in the SID List.

% SRv6 End behavior is extended with the PSP flavor support.

SRv6 support in Linux kernel v6.3 (2/2)] (C]ﬂl[ilt (ﬁl

> > D55 > 59 > st > 51 >S4 > a5 > 60 > 61> 63 g

No need to further extend iproute2 to support the PSP flavor;
> PSP flavor capability was already introduced with the NEXT-C-SID patchset;

Reuse the “flavors” attribute to set up the PSP flavor on SRv6 End;

For example:
> $ ip -6 ro a 2001:db8::1 encap segblocal action End \

flavors psp dev ethO

A PSP-enabled SRv6 End behavior instance applies:
> PSP processing only when deployed on the SR penultimate node (Segment Left = 1).
> “standard” End processing (ignoring the PSP flavor at all) in all other cases.

SRv6 support in Linux kernel v6.6 (1/2)] (C]nlftlll (ﬁ

) > D55 > 59 > 5> s3> 51> 515> 60 > 610 63 > 65 g

% In some SRv6 scenarios with large number of SIDs, we would like to:
> Leverage the compressed SID List (NEXT-C-SID mechanism);
> Forward processed packet using given L3 adjacencies (like End.X).

% NEXT-C-SID is combined with End.X, this enables arbitrary TE paths in
SRv6 domains also when using compressed SID lists

% Kernel v6.6 introduces the NEXT-C-SID flavor for End.X behavior:

> Reuse the “flavor” framework introduced with NEXT-C-SID patchset;
> Enable the End.X behavior to use the NEXT-C-SID compression mechanism.

% SRv6 End.X behavior is extended with the NEXT-C-SID flavor support.

SRv6 support in Linux kernel v6.6 (2/2) J (C]ﬂl[ilt (ﬁJ

) > D55 > 59 > 5> s3> 51> 515> 60 > 610 63 > 65 g

% No need to extend iproute2 to support the NEXT-C-SID flavor in End.X;
> The flavor capability was already introduced with the NEXT-C-SID patchset.

% The “flavors” attribute is reused to set up the NEXT-C-SID on SRv6 End.X;
> Nested sub-flavors attributes are allowed to further configure the behavior.

% For example:
> S ip -6 ro a 2001:db8::1 encap seg6local action End.X nh6 fd00::1 \

flavors next-csid lblen 48 nflen 16 ethO

% A NEXT-C-SID-enabled SRv6 End.X behavior:

> if the uSID list is not empty: uSID “next” processing and forward to an L3 adjacency;
> if the uSID list is empty: “standard” End.X processing .

’ ? 5 N
What’s next? J ce (ﬁl

< We are still working to:
> Introduce new SRv6 features into the kernel;
> Cooperate maintaining the SRv6 subsystem, e.g. bug fixing, performance tests, etc.

% (Some of) Upcoming “desidered” features will:
> Improve Observability:
m Update the SRv6 subsystem to inform the user of the reasons why a packet has
been dropped, e.g. kfree_skb_dreason();
m Add counters support to SRv6 HeadEnd behaviors (i.e.: seg6).
> Enhanced Capabilities:
m enable user-provided Traffic Class, Hop Limit in the outer IPv6 header on H.Encaps:
v Or ... decide when Traffic Class should be inherited from inner Packet!
v Useful to propagate ECN bits from inner packets to outer IPv6 + SRH.
m Set the tunnel source address (outer IPv6 SA) on a per-tunnel basis (H.Encaps).

s

Conclusions ?J cinit (ﬁl

% SRv6 support enhanced considerably across the Linux kernel releases;
> We heavily contributed to add new features and fix bugs.

% We extended the VRF and SRv6 subsystems by adding key features, e.g.:

> “Strict mode” to 1:1 map between a VRF with its RT, used by SRv6 End.DT* behaviors;
> Optional attributes to make possible complex SRv6 behavior configurations;
> Observability with SRv6 counters.

% Our work was/is driven by both research and real use-cases needs:

> Providing solution for Multi-tenant IPv4/IPv6 VPNs, e.g.: End.DT4/6/46:

> Optimizing DC network utilization Traffic Engineering for Al distributed training;

> Avoiding SRH overhead whenever possible, e.g.: with reduced encaps;

> SID compression for supporting SRv6 legacy HW and reducing overhead, i.e., NEXT-C-SID.

% Very active on SRv6: for suggestions/ideas, please drop us a message!
s EEEETHE

Thank you for your attention!

andrea.mayer@uniromac.it

29

(some) Gaps and Limitations
in
SRv6 Linux subsystem

andrea.mayer@uniromac.it

30

The evolution of SRv6 Networking Model

£l cnit @

Initial SRv6 Local delivery End.DT46 End flavor PSP
Implementation for End.DT6 support
SRH support for End.DT4 support Reduced
Netfilter Encapsulation
4.14 4.18 5.9 5.13 5.15 6.1 6.6
O o—0—0 @—@ o—@ o—@ @ @
4.10 4.16 5.5 5.11 5.14 6.0 6.3
End.BPF SRv6 counters End flavor
behavior support framework and
) NEXT-C-SID
SRv6 subsystem VRF support Netfilter hooks End.X flavor
improvement NEXT-C-SID

A lot of work has been done, but there are still problems and limits in using
SRv6 in Linux.

Linux SRv6 End.X implementation 1/2) J cnit (ﬁ

% SRv6 End.X behavior;

> SRv6 instantiation of an Adjacency SID [1], main purpose is for traffic-engineering policies.
> A node has N link with its neighbours and traffic needs to be steered on a specific link.

% Currently SRv6 End.X implementation presents a limit (by design):
> Cannot use link-local addresses to steer traffic on a specific link.
> During the years, people complains about this limitation (mailing list/private inbox).

% Alnitial solution to this issue was proposed years ago [2]:
> Add to the End.X behavior a user-provided outgoing interface (oif);

m Always consider the outgoing interface (oif) while looking up the nexthop.
> Unfortunately, this change broke perfect legitimate configurations!

&

Patch [2] was not applicable at that time. So, what can we do nowadays?

[1] - https://datatracker.ietf.org/doc/html/rfc8986#name-endx-I13-cross-connect
[2] - https://patchwork.kernel.org/project/netdevbpf/patch/20201015082119.68287-1-rejithomas@juniper.net/

https://datatracker.ietf.org/doc/html/rfc8986#name-endx-l3-cross-connect
https://patchwork.kernel.org/project/netdevbpf/patch/20201015082119.68287-1-rejithomas@juniper.net/

Linux SRv6 End.X implementation (2/2)

cnit @

< With the support for optional attributes in the SRv6 Endpoints:
> Differentiation between mandatory attributes and optional ones;
> A behavior could be configured in different ways, depending on provided attributes;

% SRv6 End.X implementation limit could be overcome:
> Considering what has been proposed in (rejected) patch [2], but with some changes, e.g.
m oif isan optional attribute BUT is considered mandatory when next-hop address
(nh6) is a link-local one;
m oif,if provided, can also be used for non link-local addresses (forcing lookup to
consider also that interface);
m Whenoif is not provided, End.X processing logic is left unchanged (legacy support).

% The same approach could used for the other End DX4/DXé.

[1] - https://datatracker.ietf.org/doc/html/rfc8986#name-endx-I13-cross-connect
[2] - https://patchwork.kernel.org/project/netdevbpf/patch/20201015082119.68287-1-rejithomas@juniper.net/

https://datatracker.ietf.org/doc/html/rfc8986#name-endx-l3-cross-connect
https://patchwork.kernel.org/project/netdevbpf/patch/20201015082119.68287-1-rejithomas@juniper.net/

Uneven Routing Error Handling in SRv6 End (1/2)

cnit @

% SRv6 End* processes (in some way) packets and then routes them;

% End/.X/.T and End.DX6/DT6 route packet w.r.t. the outer/inner IPv6 DA:

> They all rely on the same routing “helper” function e.g., seg6 nexthop lookup() ;

m

< End.DX4/End.DT4 routes (decap) packet considering the inner IPv4:

> They all rely on the same routing “helper” function e.g., ip route input () ;

% However... depending on the Endpoint and the processed protocol,

routing errors are handled differently...
> |Pv4 routing issues are immediately handled and SRv6 processing stops returning an
error to the SRv6 subsystem :-)
> |Pv6 routing errors are not directly handled :-(
m Instead, processing continues and dst_input() is called: dst->input() callback will
decide the fate of the packet;
m In case of routing error, packet are dropped but dst->input() returns 0: consumed!

e

Uneven Routing Error Handling in SRv6 End (2/2)

cnit @

% Uneven routing error handling (by design) in End* lead to some issues:
> hides routing only IPv6 failures from the SRv6 network subsystem;
> preventing aggregation of statistics on routing errors and per-behavior increasing error
counters (again only for IPv6).

% We need to change the routing error handling design:
> SRv6 End* dealing with IPv6 routing errors should return error codes to the SR
subsystem;
> Release resources as soon as the routing error is happened, e.g.: release the skb

< We would improve the SRv6 route error handling:
> By checking the return code of seg6_lookup_nexthop(). When an error is returned:
m Release the skb
m Report the code to the SRv6 subsystem
> Visibility of routing issues (for IPv6) in behaviors counter statistics.

% We have a patch ready to be sent for improving all of this!
s B 35

Flawed SRv6 config leading to stack overflow (i3 J CINLLE (ﬁ

% SRv6 behaviors alter packets depending on business logic:
> encap/decap logic “exposes” the IPv{4,6} address on which routing lookup is performed;
m Such addresses could “trigger” other cascading SRv6 behaviors!
> Processing is carried out through special LWT types called seg6 and seg6local.

% A (wrong) SRv6 config leading to kernel stack overflow was recently
reported in the mailing list [1]:
> |t breaks the SRv6 programming model, where a SID provides both topological and
service information;

% Such config is flawed, but presents a pathological issue worth noting:
> |t essentially creates a loop between two (different) LWTs input processing functions
calling each other!
> You can find my detailed explanation in [2].

[1] - https://lore.kernel.org/netdev/2bc9e2079e864a9290561894d2a602d6@akamai.com/T/
[2] - https://lore.kernel.org/netdev/20241120181201.594aab6da28ec54d263c9177@uniroma2.it/

https://lore.kernel.org/netdev/2bc9e2079e864a9290561894d2a602d6@akamai.com/T/
https://lore.kernel.org/netdev/20241120181201.594aab6da28ec54d263c9177@uniroma2.it/

Flawed SRv6 config leading to stack overflow (23 j CINLLE (ﬁ

/7

% Inthe same host:
1. Aplain IPv4 packet with DA=X is encapsulated into an SRv6 packet with IPv6
DA=Y, e.g..

a. $ ip ro add X encap seg6b mode encap segs Y dev eth0 vrf vrf9

2. The produced SRv6 packet (DA=Y) is then decapsulated (within the same VRF),
retrieving back the carried out plain IPv4 packet with DA=X, e.g.:

a. $ ip ro add Y encap segblocal action End.DT4 vrftable 1009 dev
vrfo
(table 1009 is bound to vrf9)

7/

% And here we have a loop:
> (2) will call (1), which in turn will call (2), and so on.

7

% We have no control over a misconfigured system, but how can we work to
mitigate this situation?
s

Flawed SRv6 config leading to stack overflow (3

cnit @

% We've come up with some ideas on how to deal with the “loop” issue:

> All fundamentally based on tracking (e.g., count) how many times a packet is handled by a
LWT tunnel processing function (no matter of LWT type);

> LWT processing counter operates on a per-packet basis;

> When the counter exceeds a given value, the packet is dropped avoiding the stack overflow.

7/

% How can we (try to) overcome this issue?
> Different approaches to relate a LWT processing counter with a packet:
m Store the counter in skb->cb[];
m Store a counter in the skb directly;
m Create a new type of skb extensions to store the counter.
> We have implemented a PoC using a new skb extension for counting how many times a
packet has been processed by LWT input/output functions.

7/

< All have pros and cons, discuss about them together!

Linux H.L2Encaps implementation (1/2)

cnit @

m

% Whatis SRv6 H.L2Encaps?

> Encapsulates Ethernet frames within SRv6 packets;
> Facilitates Layer 2 Ethernet VPN (EVPN);
> Used in combination with SRv6 Endpoint Decapsulation of L2 and X-connect (DX2);

< Implemented in Linux by leveraging Lightweight Tunnel (LWT - segé6):
> LWTs are bound to Layer 3 protocols as IPv4 or IPv6!

% But... we need to encapsulate a generic Ethernet frame I?
> H.L2Encaps can not encapsulate ethernet frames with generic ethernet type protocols;
> ...and even in the case of IPv4 and IPv6 layers, need some tricks to make it “work”, e.g.:
m “playing” with static ARP/NDP;
using bridge and dummy interfaces to emulate a quasi-pseudo-wire interface on

encap node
m spoofing the destination mac address on encap node or rewrite che mac address in

the encap and decap nodes accordingly.

Linux H.L2Encaps implementation (2/2)

cnit @

% How can we overcome H.L2Encaps limitation (build upon LWT)?

% Probability creating a pseudo-wire virtual ethernet device...
> A new network device type “seg6” which is capable of encapsulating ethernet frames:
m Add outer IPv6 + SRH (or performs a reduced encapsulation);
m SID List to be pushed defined during the device setup;

% And what about the decap?

> We can “re-use” the End.DX2 for decapsulating and forwarding packets;
> It's worth noting that SID are usually not bound to any local address/interface:
m We cannot leverage the input datapath;
> We could intercept IPv6 + SRH traffic using netfilter callbacks and then process the inner
L2 frame accordingly.

< But..what about creating a new TC action for implementing the SRv6
H.L2Encaps:-) ?

e

