
Andrea Mayer

University of Rome Tor Vergata / CNIT / COMMON NET

SRv6 in the Linux kernel

Linux Netdev 0x19 - Zagreb, Croatia

Who I am?

❖ M.Sc degree in Computer Science and PhD in Electronic Engineering at
University of Rome "Tor Vergata";

❖ Cooperates as a research engineer with:
➢ CNIT (National Inter-University Consortium for Telecommunications);

➢ University of Rome "Tor Vergata";

➢ COMMON NET (Italian Internet Service Provider and Cloud Service Provider);

❖ Main interests focus on Linux kernel networking stack, IPv6 Segment
Routing (SRv6), eBPF/XDP networking, Software Defined Networking
(SDN);

❖ Developer and contributor to the SRv6 subsystem of the Linux kernel.

2

Quick agenda

❖ Quick journey through the evolution of SRv6 in the Linux kernel:
➢ SRv6 initial support (v4.10 ~ v4.18);
➢ Our contributions from v5.0 up to now;
➢ Kernel space/User space (i.e., iproute2).

❖ What’s next?

❖ Conclusions.

3

SRv6 support in Linux kernel v4.10 (1/2)

❖ Support for SRv6 appears in Linux kernel v4.10;

❖ Implement minimal support for processing of
SR-enabled packets:
➢ Add SRH encapsulation and insertion (seg6 - LWT);
➢ segment Endpoints processing (require SRH and DA = local):

■ Advance the next segment and re-routing;
■ Egress for encap packets: remove of outer IPv6 and SRH;

➢ HMAC support.

❖ Endpoint enabled through per-netns sysctl knobs:
➢ net.ipv6.conf.default.seg6_enabled

net.ipv6.conf.<ifname>.seg6_enabled

4

4.10

 NIC
driver

prerouting

seg6 (LWT)input

forward

segment
Endpoint

processing

routing

SRH

SRv6 support in Linux kernel v4.10 (2/2)

❖ iproute2 extended to:
➢ Support for SRv6 encapsulation (T.Encaps)* and insertion (T.Inserts) **;
➢ Set the source tunnel address;
➢ Handle the HMAC.

❖ Some examples:
➢ To encapsulate an IPv6 packet into an outer IPv6 + SRH:

$ ip ro add 2001:db8::1 encap seg6 mode encap segs fc00::1,fc00::2 dev eth0

➢ To set the SRv6 tunnel source address (once per network namespace):
$ ip sr tunsrc set 2001:2::1

5

Dst of packets that
will be encap

encap mode Segments belonging to
the SID List

seg6
LWT

4.10

(*) T.Encaps changed in H.Encaps; (**) T.Inserts has been removed from RFC 8986

SRv6 support in Linux kernel v4.14 (1/2)

6

❖ SRv6 subsystem has been considerably improved, e.g.,:
➢ Support SR-encap of IPv4 packets and L2 ethernet frames (*) in IPv6 + SRH;

❖ Add support for advanced local segment processing (seg6local - LWT):
➢ Implement several “local behaviors” (actions) such as: SRv6 End.X, End.T, End.DX4, etc;
➢ A local behavior can be configured with different (mandatory) parameters/attributes;

ℹ Packets to be processed must have IPv6 DA != local;
■ Some behaviors do not require SRH at all!

4.10 4.14

seg6 (LWT)

input seg6local
(LWT)

… forward

routing

(*) Only support ethernet frames with IPv4/IPv6 as L3 proto.

SRv6 support in Linux kernel v4.14 (2/2)

7

❖ iproute2 extended to support advanced local segment processing:
➢ set up/destroy local behavior instances;
➢ show instantiated behaviors with all the user-provided parameters/attributes.

❖ Few examples:
➢ Instantiate the SRv6 End behavior for the given SID:

$ ip -6 ro add 2001:db8::1 encap seg6local action End dev eth0

➢ Instantiate the SRv6 End.T behavior for the given SID:
$ ip -6 ro add 2001:db8::1 encap seg6local action End.T table main dev eth0

active SID seg6local
LWT

Behavior to be
executed

attribute table, valorized with main

4.10 4.14

SRv6 support in Linux kernel v4.16

8

❖ IPv6 Segment Routing Header (SRH) support for Netfilter:
➢ Provided as a kernel module;
➢ iptables CLI integration to set matching rules.

❖ It allows matching packets based on SRH;
➢ Supported match options include:

■ Next header, Header Extension Length, Segment Left, Last Entry, Tag.

❖ It can be combined with other Netfilter extensions to design complex
filtering chains and actions:
➢ e.g., implementing SRv6 network packet loss monitoring, delay monitoring, etc.

4.10 4.164.14

SRv6 support in Linux kernel v4.18 (1/2)

9

❖ SRv6 local processing enhanced with the new End.BPF action by:
➢ A new BPF program type (BPF_PROG_TYPE_LWT_SEG6LOCAL);
➢ BPF helpers to read/write some fields of the SRH (flags, tag and TLVs)

❖ End.BPF works like the SRv6 End:
➢ SRH must be present;
➢ Advance the next segment.

❖ End.BPF provides an hook for attaching an eBPF program:
➢ It can not make arbitrary reads/writes directly into the packet;
➢ Only some fields of the SRH (flags, tag and TLVs) can be altered through the helper

functions.

4.10 4.16 4.184.14

SRv6 support in Linux kernel v4.18 (2/2)

10

❖ iproute2 extended to load&attach an eBPF program to End.BPF;

❖ A file object can contains multiple eBPF programs in different sections:
➢ Only one program can be attached to an End.BPF instance.

❖ For example:
➢ Load&attach eBPF program “prog1” contained in “foo_obj.o” for the given SID:

$ ip -6 route add 2001:db8::6 encap seg6local action End.BPF endpoint \

 object foo-obj.o section prog1 dev eth0

File object
foo-obj.o

eBPF program in
section prog1

4.10 4.16 4.184.14

SRv6 support in Linux kernel v5.5 and v5.9

11

❖ Support for local delivery of decap packets in SRv6 End.DT6 (*);

❖ The Virtual Routing and Forwarding (VRF) subsystem is an enabling key for
implementing new SRv6 behaviors (**);

❖ The VRF is extended by supporting the new “Strict mode”:
➢ It imposes a one-to-one mapping between a VRF and the associated Routing Table;
➢ Network-namespace aware;
➢ It can be turned on/off by acting on the “strict_mode” sysctl knob:

■ net.vrf.strict_mode (disabled by default for legacy purposes).

(*) since kernel v5.5, (**) since kernel v5.9

4.10 4.16 4.18 5.5 5.94.14

SRv6 support in Linux kernel v5.11 (1/3)

12

❖ Local processing of SRv6 (seg6local) subjected to heavy lifting:
➢ Improved the management of behavior attributes;
➢ Added support for optional attributes used by behaviors;
➢ Added callbacks for customizing creation/destruction of behaviors.

❖ Add support for SRv6 End.DT4 behavior:
➢ It decaps inner IPv4 packets and performs lookup into a given Routing Table (RT):

■ Does not strictly require SRH.
➢ It leverages the VRF to force the routing lookup into the associated RT:

■ VRF “strict_mode” must be turned on!

❖ Enhance the SRv6 End.DT6 operating mode:
➢ Legacy mode (providing RT) or using a VRF as in the End.DT4 case.

4.10 4.16 4.18 5.5 5.9 5.114.14

SRv6 support in Linux kernel v5.11 (2/3)

13

❖ A high-level view on SRv6 End.DT4 behavior processing:

4.10 4.16 4.18 5.5 5.9 5.114.14

NIC

prerouting

routing

10.0.0.0/24 forward to dev eth_t100
… …

SID Action
VRF table (100)

fc00:21::6004 apply End.DT4 vrftable 100
… …

SID Action
localsid table (90)

seg6local
End.DT4 vrftable 100

eth_t100
(target)

vrf-100 (VRF)

IPv6
DA=fc00:21::6004 SRH IPv4 Payload IPv4 Payload

1

2

3

4

5

(rule) fc00::/16 lookup 90

k processing step

SRv6 support in Linux kernel v5.11 (3/3)

14

❖ iproute2 extended to support both SRv6 End.DT4 and End.DT6 (VRF
mode);

❖ iproute2 does not require any change to support optional attributes
for SRv6 local behaviors;

❖ For example, to instantiate an SRv6 End.DT4 behavior for a given SID:
$ sysctl -wq net.vrf.strict_mode=1
$ ip link add name vrf-100 type vrf table 100
[...] set the target device of the VRF connecting with the host [...]
$ ip -6 r a 2001:db8::d4 encap seg6local action End.DT4 vrftable 100 dev vrf-100

RT associated with
VRF vrf-100

4.10 4.16 4.18 5.5 5.9 5.114.14

SRv6 support in Linux kernel v5.13 (1/2)

15

❖ Add counters support for SRv6 local processing;

❖ For each local behavior instance they count:
➢ Total number of correctly processed packets;
➢ Total amount of traffic (in bytes) correctly processed;
➢ Total number of packets NOT correctly processed.

❖ Counters are very interesting for:
➢ Network monitoring purposes;
➢ Checking whether a behavior is triggered, works as expected or not;
➢ Troubleshooting purposes.

❖ Counters can be enabled on a behavior instance during the setup phase.

4.10 4.16 4.18 5.5 5.9 5.11 5.134.14

SRv6 support in Linux kernel v5.13 (2/2)

16

❖ By extending iproute2, each SRv6 behavior instance can be configured
to make use of counters;

❖ SRv6 counters supported for any SRv6 local behavior (seg6local) as
follows:

➢ Add a new SRv6 End behavior instance with the given SID and counters turned on:
$ ip -6 route add 2001:db8::1 encap seg6local action End count dev eth0

➢ Per-behavior counters can be shown by adding “-s” to the iproute2 CLI, e.g.:
$ ip -s -6 route show 2001:db8::1
2001:db8::1 encap seg6local action End packets 0 bytes 0 errors 0 dev eth0

count is an optional attribute

4.10 4.16 4.18 5.5 5.9 5.11 5.134.14

counters (aka statistics)

SRv6 support in Linux kernel v5.14

17

❖ Add support for SRv6 End.DT46 behavior:
➢ With End.DT4 and End.DT6 is not possible to create SRv6 tunnel carrying both IPv4 and

IPv6.

❖ End.DT46 decaps both IPv4/IPv6 traffic and routes traffic using a VRF:
➢ It reuses the core implementation of End.DT4 and End.DT6 (VRF mode);
➢ The VRF “strict_mode” must be enabled.

❖ Performance tests show no degradation in performance when DT46 is
used w.r.t. End.DT4/6:
➢ End.DT46 greatly simplifies the setup and operations of SRv6 VPNs.

❖ iproute2 updated to support the new SRv6 End.DT46 behavior:
➢ similar CLI and configuration required for setting End.DT4 and End.DT6 (VRF mode).

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.144.14

SRv6 support in Linux kernel v5.15

18

❖ Add optional Netfilter hooks to SRv6 processing;

❖ Netfilter hooks useful to track (conntrack) both outer flows and inner
flows, i.e., flows carried by SRv6 packets.

❖ By default, Netfilter hooks for SRv6 are disabled:
➢ It can impact on performance when turned on;
➢ sysctl (system-wide) toggle for enabling LWT tunnel netfilter hooks:

■ net.netfilter.nf_hooks_lwtunnel

➢ NOTE: Disabling the nf_hooks_lwtunnel requires kernel reboot.

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.154.14

SRv6 support in Linux kernel v6.0 (1/2)

19

❖ Add support for SRv6 Headend Reduced:
➢ H.Encaps.Red reduced version of H.Encaps.
➢ H.L2Encaps.Red reduced version of H.L2Encaps.

❖ The H.(L2)Encaps.Red reduces the length of the SRH by:
➢ Excluding the first segment (SID) from the SID List carried by SRH;
➢ Pushing the excluded SID directly into the IPv6 DA.

❖ The H.(L2)Encaps.Red can avoid the SRH at all if the SRv6 policy contains
only one SID.

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.04.14

40 + 24 bytes 40 bytesredundant info

H.Encaps (policy with 1 SID - no other info in SRH)

IPv6
DA=fc00:21::6004

SRH
SIDList = fc00:21::6004 PayloadIPv4/6 IPv6

DA=fc00:21::6004 Payload

H.Encaps.Red (policy with 1 SID)

IPv4/6

SRv6 support in Linux kernel v6.0 (2/2)

20

❖ iproute2 updated to support both H.Encaps.Red and H.L2Encaps.Red;

❖ Two new mode are available to encap seg6 in iproute2 CLI:
➢ encap.red for SRv6 H.Encaps.Red behavior;
➢ l2encap.red for SRv6 H.L2Encaps behavior.

❖ Same iproute2 CLI syntax to perform reduced encaps, for example:
➢ Perform a reduced encapsulation of an IPv4 packet into an outer IPv6 + SRH

$ ip -4 ro a 10.0.0.2 \
encap seg6 mode encap.red segs fc00::1,fc00::2 dev eth0

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.04.14

SID List is transparently
reduced by the Linux kernel

H.Encaps.Red

SRv6 support in Linux kernel v6.1 (1/2)

21

❖ Some SRv6 scenarios may require large number of SIDs;

❖ Reducing the size of a SID List is useful to:
➢ Minimize the impact on MTU; enable SRv6 on legacy HW with limited processing power.

❖ Kernel v6.1 introduces the NEXT-C-SID (aka uSID) [1] mechanism for SRv6:
➢ Efficient representation (compression) of the SID LIst;

■ Several SRv6 segments can be encoded within a single 128-bit SID.

➢ NEXT-C-SID mechanism relies on the “flavors” framework (RFC 8986):
■ Additional operations that can modify/extend existing behaviors.

❖ SRv6 End behavior is extended with the NEXT-C-SID flavor support.
[1] - https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.0 6.14.14

https://datatracker.ietf.org/doc/html/draft-ietf-spring-srv6-srh-compression

❖ iproute2 extended to support flavors framework;

❖ New “flavors” attribute to set up NEXT-C-SID compression on SRv6 End:
➢ Nested sub-flavors attributes are allowed to further configure the behavior;

❖ NEXT-C-SID flavor for SRv6 End behavior can be configured using optional
user-provided sub-flavors attributes:
➢ lblen, i.e., attribute for Locator-Block length in bits (> 0 and evenly div by 8);
➢ nflen, i.e., attribute for Locator-Node Function length in bits (> 0 and evenly div by 8).

❖ For example:
➢ $ ip -6 ro a fc00:0:0100:0200::/48 encap seg6local action End \

 flavors next-csid lblen 32 nflen 16 dev eth0

SRv6 support in Linux kernel v6.1 (2/2)

22

4.10 4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.0 6.14.14

flavors attribute accepts nested attributes nested attributes are optionals

Locator-Block Locator-Node Function

SRv6 support in Linux kernel v6.3 (1/2)

23

❖ In some SRv6 scenarios we would like to:
➢ Remove the SRv6 policy (i.e., the SID List) as we do not need it anymore;
➢ Keep the IPv{4,6}-in-IPv6 encapsulation for traffic to be processed;

❖ Removing the SRH when all the SIDs have been processed aims to:
➢ Reduce the MTU at some point in the network; enabling legacy HW with limited

processing power;

❖ Kernel v6.3 introduces the Penultimate Segment Pop (PSP) flavor:
➢ The PSP reuses the “flavor” framework introduced with NEXT-C-SID patchset;
➢ The PSP flavor allows an SRv6 End* behavior to pop the SRH on the penultimate SR

Endpoint node listed in the SID List.

❖ SRv6 End behavior is extended with the PSP flavor support.

4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.0 6.1… 6.3

SRv6 support in Linux kernel v6.3 (2/2)

24

4.16 4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.0 6.1… 6.3

❖ No need to further extend iproute2 to support the PSP flavor;
➢ PSP flavor capability was already introduced with the NEXT-C-SID patchset;

❖ Reuse the “flavors” attribute to set up the PSP flavor on SRv6 End;

❖ For example:
➢ $ ip -6 ro a 2001:db8::1 encap seg6local action End \

 flavors psp dev eth0

❖ A PSP-enabled SRv6 End behavior instance applies:
➢ PSP processing only when deployed on the SR penultimate node (Segment Left = 1).
➢ “standard” End processing (ignoring the PSP flavor at all) in all other cases.

SRv6 support in Linux kernel v6.6 (1/2)

25

❖ In some SRv6 scenarios with large number of SIDs, we would like to:
➢ Leverage the compressed SID List (NEXT-C-SID mechanism);
➢ Forward processed packet using given L3 adjacencies (like End.X).

❖ NEXT-C-SID is combined with End.X, this enables arbitrary TE paths in
SRv6 domains also when using compressed SID lists

❖ Kernel v6.6 introduces the NEXT-C-SID flavor for End.X behavior:
➢ Reuse the “flavor” framework introduced with NEXT-C-SID patchset;
➢ Enable the End.X behavior to use the NEXT-C-SID compression mechanism.

❖ SRv6 End.X behavior is extended with the NEXT-C-SID flavor support.

4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.0 6.1 6.3… 6.6

SRv6 support in Linux kernel v6.6 (2/2)

26

❖ No need to extend iproute2 to support the NEXT-C-SID flavor in End.X;
➢ The flavor capability was already introduced with the NEXT-C-SID patchset.

❖ The “flavors” attribute is reused to set up the NEXT-C-SID on SRv6 End.X;
➢ Nested sub-flavors attributes are allowed to further configure the behavior.

❖ For example:
➢ $ ip -6 ro a 2001:db8::1 encap seg6local action End.X nh6 fd00::1 \

 flavors next-csid lblen 48 nflen 16 eth0

❖ A NEXT-C-SID-enabled SRv6 End.X behavior:
➢ if the uSID list is not empty: uSID “next” processing and forward to an L3 adjacency;
➢ if the uSID list is empty: “standard” End.X processing .

4.18 5.5 5.9 5.11 5.13 5.14 5.15 6.0 6.1 6.3… 6.6

What’s next?

27

❖ We are still working to:
➢ Introduce new SRv6 features into the kernel;
➢ Cooperate maintaining the SRv6 subsystem, e.g. bug fixing, performance tests, etc.

❖ (Some of) Upcoming “desidered” features will:
➢ Improve Observability:

■ Update the SRv6 subsystem to inform the user of the reasons why a packet has
been dropped, e.g. kfree_skb_dreason();

■ Add counters support to SRv6 HeadEnd behaviors (i.e.: seg6).
➢ Enhanced Capabilities:

■ enable user-provided Traffic Class, Hop Limit in the outer IPv6 header on H.Encaps:
✓ Or … decide when Traffic Class should be inherited from inner Packet!
✓ Useful to propagate ECN bits from inner packets to outer IPv6 + SRH.

■ Set the tunnel source address (outer IPv6 SA) on a per-tunnel basis (H.Encaps).

Conclusions

28

❖ SRv6 support enhanced considerably across the Linux kernel releases;
➢ We heavily contributed to add new features and fix bugs.

❖ We extended the VRF and SRv6 subsystems by adding key features, e.g.:
➢ “Strict mode” to 1:1 map between a VRF with its RT, used by SRv6 End.DT* behaviors;
➢ Optional attributes to make possible complex SRv6 behavior configurations;
➢ Observability with SRv6 counters.

❖ Our work was/is driven by both research and real use-cases needs:
➢ Providing solution for Multi-tenant IPv4/IPv6 VPNs, e.g.: End.DT4/6/46:
➢ Optimizing DC network utilization Traffic Engineering for AI distributed training;
➢ Avoiding SRH overhead whenever possible, e.g.: with reduced encaps;
➢ SID compression for supporting SRv6 legacy HW and reducing overhead, i.e., NEXT-C-SID.

❖ Very active on SRv6: for suggestions/ideas, please drop us a message!

Thank you for your attention!

29

andrea.mayer@uniroma2.it

(some) Gaps and Limitations
in

SRv6 Linux subsystem

30

andrea.mayer@uniroma2.it

The evolution of SRv6 Networking Model

31

A lot of work has been done, but there are still problems and limits in using
SRv6 in Linux.

Initial SRv6
Implementation

SRv6 subsystem
improvement

4.10

4.14

4.16

4.18

5.5

5.9

5.11

5.13

5.14

5.15

6.0

6.1

6.3

6.6

End.BPF
behavior

VRF support

SRv6 counters
support

Netfilter hooks

End flavor
framework and

NEXT-C-SID
End.X flavor
NEXT-C-SID

End flavor PSP

Reduced
Encapsulation

End.DT46
support

Local delivery
for End.DT6

End.DT4 supportSRH support for
Netfilter

Linux SRv6 End.X implementation (1/2)

32

❖ SRv6 End.X behavior:
➢ SRv6 instantiation of an Adjacency SID [1], main purpose is for traffic-engineering policies.
➢ A node has N link with its neighbours and traffic needs to be steered on a specific link.

❖ Currently SRv6 End.X implementation presents a limit (by design):
➢ Cannot use link-local addresses to steer traffic on a specific link.
➢ During the years, people complains about this limitation (mailing list/private inbox).

❖ A initial solution to this issue was proposed years ago [2]:
➢ Add to the End.X behavior a user-provided outgoing interface (oif);

■ Always consider the outgoing interface (oif) while looking up the nexthop.
➢ Unfortunately, this change broke perfect legitimate configurations!

❖ Patch [2] was not applicable at that time. So, what can we do nowadays?

[1] - https://datatracker.ietf.org/doc/html/rfc8986#name-endx-l3-cross-connect
[2] - https://patchwork.kernel.org/project/netdevbpf/patch/20201015082119.68287-1-rejithomas@juniper.net/

https://datatracker.ietf.org/doc/html/rfc8986#name-endx-l3-cross-connect
https://patchwork.kernel.org/project/netdevbpf/patch/20201015082119.68287-1-rejithomas@juniper.net/

Linux SRv6 End.X implementation (2/2)

33

❖ With the support for optional attributes in the SRv6 Endpoints:
➢ Differentiation between mandatory attributes and optional ones;
➢ A behavior could be configured in different ways, depending on provided attributes;

❖ SRv6 End.X implementation limit could be overcome:
➢ Considering what has been proposed in (rejected) patch [2], but with some changes, e.g.:

■ oif is an optional attribute BUT is considered mandatory when next-hop address
(nh6) is a link-local one;

■ oif, if provided, can also be used for non link-local addresses (forcing lookup to
consider also that interface);

■ When oif is not provided, End.X processing logic is left unchanged (legacy support).

❖ The same approach could used for the other End DX4/DX6.

[1] - https://datatracker.ietf.org/doc/html/rfc8986#name-endx-l3-cross-connect
[2] - https://patchwork.kernel.org/project/netdevbpf/patch/20201015082119.68287-1-rejithomas@juniper.net/

https://datatracker.ietf.org/doc/html/rfc8986#name-endx-l3-cross-connect
https://patchwork.kernel.org/project/netdevbpf/patch/20201015082119.68287-1-rejithomas@juniper.net/

Uneven Routing Error Handling in SRv6 End (1/2)

34

❖ SRv6 End* processes (in some way) packets and then routes them;

❖ End/.X/.T and End.DX6/DT6 route packet w.r.t. the outer/inner IPv6 DA:
➢ They all rely on the same routing “helper” function e.g., seg6_nexthop_lookup() ;

❖ End.DX4/End.DT4 routes (decap) packet considering the inner IPv4:
➢ They all rely on the same routing “helper” function e.g., ip_route_input() ;

❖ However… depending on the Endpoint and the processed protocol,
routing errors are handled differently…
➢ IPv4 routing issues are immediately handled and SRv6 processing stops returning an

error to the SRv6 subsystem :-)
➢ IPv6 routing errors are not directly handled :-(

■ Instead, processing continues and dst_input() is called: dst->input() callback will
decide the fate of the packet;

■ In case of routing error, packet are dropped but dst->input() returns 0: consumed!

Uneven Routing Error Handling in SRv6 End (2/2)

35

❖ Uneven routing error handling (by design) in End* lead to some issues:
➢ hides routing only IPv6 failures from the SRv6 network subsystem;
➢ preventing aggregation of statistics on routing errors and per-behavior increasing error

counters (again only for IPv6).

❖ We need to change the routing error handling design:
➢ SRv6 End* dealing with IPv6 routing errors should return error codes to the SR

subsystem;
➢ Release resources as soon as the routing error is happened, e.g.: release the skb

❖ We would improve the SRv6 route error handling:
➢ By checking the return code of seg6_lookup_nexthop(). When an error is returned:

■ Release the skb
■ Report the code to the SRv6 subsystem

➢ Visibility of routing issues (for IPv6) in behaviors counter statistics.

❖ We have a patch ready to be sent for improving all of this!

Flawed SRv6 config leading to stack overflow (1/3)

36

❖ SRv6 behaviors alter packets depending on business logic:
➢ encap/decap logic “exposes” the IPv{4,6} address on which routing lookup is performed;

■ Such addresses could “trigger” other cascading SRv6 behaviors!
➢ Processing is carried out through special LWT types called seg6 and seg6local.

❖ A (wrong) SRv6 config leading to kernel stack overflow was recently
reported in the mailing list [1]:
➢ It breaks the SRv6 programming model, where a SID provides both topological and

service information;

❖ Such config is flawed, but presents a pathological issue worth noting:
➢ It essentially creates a loop between two (different) LWTs input processing functions

calling each other!
➢ You can find my detailed explanation in [2].

[1] - https://lore.kernel.org/netdev/2bc9e2079e864a9290561894d2a602d6@akamai.com/T/
[2] - https://lore.kernel.org/netdev/20241120181201.594aab6da28ec54d263c9177@uniroma2.it/

https://lore.kernel.org/netdev/2bc9e2079e864a9290561894d2a602d6@akamai.com/T/
https://lore.kernel.org/netdev/20241120181201.594aab6da28ec54d263c9177@uniroma2.it/

Flawed SRv6 config leading to stack overflow (2/3)

37

❖ In the same host:
1. A plain IPv4 packet with DA=X is encapsulated into an SRv6 packet with IPv6

DA=Y, e.g.:
a. $ ip ro add X encap seg6 mode encap segs Y dev eth0 vrf vrf9

2. The produced SRv6 packet (DA=Y) is then decapsulated (within the same VRF),
retrieving back the carried out plain IPv4 packet with DA=X, e.g.:
a. $ ip ro add Y encap seg6local action End.DT4 vrftable 1009 dev

vrf9
(table 1009 is bound to vrf9)

❖ And here we have a loop:
➢ (2) will call (1), which in turn will call (2), and so on.

❖ We have no control over a misconfigured system, but how can we work to
mitigate this situation?

Flawed SRv6 config leading to stack overflow (3/3)

38

❖ We've come up with some ideas on how to deal with the “loop” issue:
➢ All fundamentally based on tracking (e.g., count) how many times a packet is handled by a

LWT tunnel processing function (no matter of LWT type);
➢ LWT processing counter operates on a per-packet basis;
➢ When the counter exceeds a given value, the packet is dropped avoiding the stack overflow.

❖ How can we (try to) overcome this issue?
➢ Different approaches to relate a LWT processing counter with a packet:

■ Store the counter in skb->cb[];
■ Store a counter in the skb directly;
■ Create a new type of skb extensions to store the counter.

➢ We have implemented a PoC using a new skb extension for counting how many times a
packet has been processed by LWT input/output functions.

❖ All have pros and cons, discuss about them together!

Linux H.L2Encaps implementation (1/2)

39

❖ What is SRv6 H.L2Encaps?
➢ Encapsulates Ethernet frames within SRv6 packets;
➢ Facilitates Layer 2 Ethernet VPN (EVPN);
➢ Used in combination with SRv6 Endpoint Decapsulation of L2 and X-connect (DX2);

❖ Implemented in Linux by leveraging Lightweight Tunnel (LWT - seg6):
➢ LWTs are bound to Layer 3 protocols as IPv4 or IPv6!

❖ But… we need to encapsulate a generic Ethernet frame !?
➢ H.L2Encaps can not encapsulate ethernet frames with generic ethernet type protocols;
➢ … and even in the case of IPv4 and IPv6 layers, need some tricks to make it “work”, e.g.:

■ “playing” with static ARP/NDP;
■ using bridge and dummy interfaces to emulate a quasi-pseudo-wire interface on

encap node
■ spoofing the destination mac address on encap node or rewrite che mac address in

the encap and decap nodes accordingly.

Linux H.L2Encaps implementation (2/2)

40

❖ How can we overcome H.L2Encaps limitation (build upon LWT)?

❖ Probability creating a pseudo-wire virtual ethernet device…
➢ A new network device type “seg6” which is capable of encapsulating ethernet frames:

■ Add outer IPv6 + SRH (or performs a reduced encapsulation);
■ SID List to be pushed defined during the device setup;

❖ And what about the decap?
➢ We can “re-use” the End.DX2 for decapsulating and forwarding packets;
➢ It’s worth noting that SID are usually not bound to any local address/interface:

■ We cannot leverage the input datapath;
➢ We could intercept IPv6 + SRH traffic using netfilter callbacks and then process the inner

L2 frame accordingly.

❖ But…what about creating a new TC action for implementing the SRv6
H.L2Encaps :-) ?

