

SRv6 NEXT-C-SID - "IPv6 uSID"

Clarence Filsfils

Flexibility

- uSID Block can be Private or Public
- uSID Block can be independent from the IP address block
- Multiple uSID Blocks can be allocated: one per Flex-Algo
- uSID Block length can be 16, 32 or 48-bit
- uSID length can be 8, 16, 32... in fact any length
 - And within a program uSID of different lengths can be combined

A Typical Deployment

"IPv6 uSID infra is configured in Rakuten network on 14k+ devices, 70% services running on uSID successfully"

Akash Agrawal, Rakuten

Swisscom: Introducing SRv6 to an existing network

- uSID deployed using unique Local Addresses (ULA)
 - Non routable
- Locator prefix: fdab:cd0<G>:<DD><NN>::/48
 - fdab:cd0/24 block for uSID allocation
 - <G>: Flex Algorithms (0-f)
 - **<DD>**: Domain ID (0x00 0xdf)
 - **<NN>**: Node ID (0x00 0xff)
- Summarization:
 - Leak single /40 prefix to the Core
- Migration approaches:
 - Approach 1: Back-to-back connections
 - Approach 2: Dual-connected PE

Addressing concept:

Design for aggregation and security

Aggregation: We do not currently aggregate the SRv6 locator ranges but have assigned them to allow for aggregation.

Security: No access to locator space must be possible, not even for management purposes.

- Loopback0 for SRv6: <locator>::1 → No external access
- Loopback1 for management, streaming telemetry, etc → Separate range using global space, encoding DD and NN to also allow for aggregation

https://www.segment-routing.net/conferences/2023-02-10-SRv6-deployment-swisscom/

© 2024 Cisco and/or its affiliates. All rights reserved. Cisco Public

IGP with 2 Algorithms

32-bit Private Block, one per Algo

16-bit uSID

- Represented as 4 nibbles
- Globally Significant: if first nibble is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D}
- E.g. Node 2 is 0x0002

Seamless Deployment

Node 3 forwards as per legacy longest match FC00:0000:0002/48

16-bit uSID — Locally Significant

- If first nibble is {E, F}
- @ Node 2, 0xF009 is local bound to VRF 9

Hardware Efficiency

- Node 2 processes two uSID's with one single longest match
- FC00:0008:0002:F009::/64 → It is me and this is for VRF 9

Intuitive & Rich

- FC00:0000:0002:F009:0000:0000:0000
 - Min Cost Path to node 2 and then lookup in VRF9
- FC00:0008:0002:F009:0000:0000:0000:0000
 - Min Lat Path to node 2 and then lookup in VRF9
- FC00:0000:0003:0002:F009:0000:0000:0000
 - Min Cost Path to node 3 then 2 and then lookup in VRF9
- FC00:0000:0003:F005:0002:F009:0000:0000
 - Min Cost Path to node 3, VNF 5, min cost path to 2 and then lookup in VRF9
- A program reads left to right and has 6 uSID's in the DA
- uSID 0000 means "end of program"

Ultra Scale

- Global uSID
 - 4 billions while only consuming 0.2% of ULA
 - More is possible
- Local uSID
 - 4 billions leveraging wide 32-bit uSID's for ultra scale edge services
- Routing Summarization
- Best compression efficiency

Shifting to the Next uSID

- Node 3 receives DA FC00:0000:0003:0002:F001:0000:0000:0000
- Node 3 longest matches FC00:0000:0003/48 => "It is me"
- Node 3 shifts the programs by 1 uSID and the DA becomes
 FC00:0000:0002:F001:0000:0000:0000
- Node 3 looks up the updated DA and matches FC00:0000:0002/48
- Node 3 forwards the packet to node 2
- Linerate across the whole portfolio

If more than 6 uSID's are required

```
Outer DA: FC00:0000:0001:0002:0003:0004:0005:0006

uSID1 uSID2 uSID3 uSID4 uSID5 uSID6

SRH: FC00:0000:0007:0008:0009:0010:0011:0012

uSID7 uSID8 uSID9 uSID10 uSID11 uSID12
```

- 12 uSID's with SRH holding a single SID
- 18 with SRH holding 2 SID's
- SRH rarely needed as 6 uSID's in DA are enough most of the time

Benefits

Grand Architecture with HW-Efficiency

- Revolutionary Network Programming Model (Turing Complete)
 - The IP Destination Address (DA) holds up to 14 instructions
 - > 2-byte block, 1-byte uSID's
 - SRH extension header holds additional instructions (rarely needed)
- Any behavior can be bound to the instruction
 - Shortest path according to cost, latency with exclusion of unsecured links
 - TDM-alike behavior (one instruction per hop/interface)
 - TE, FRR, NFV, Cryptography...
- Linerate across our entire portfolio

Novel Architecture with Brownfield

- Classic Longest-Match at Legacy IP node
- The network program is opaque to legacy node
- Alibaba, Swisscom, Bell... are all brownfield deployments

Unified Core Metro Access DC Cloud IP solution Outperforms per-domain custom shim (MPLS, VxLAN)

Outperform MPLS - Daniel Voyer (Bell Canada)

- Native Optimum Slicing
 - SLID is encoded in Flow Label
- HW Linerate Push: 3 times better
 - J2 uSID linerate push: 30 uSIDs >> 10 MPLS Labels
- HW Counter and FIB consumption: 4 times better
 - uSID requires 4 times less counters and FIB entries than MPLS
- Routing scale: 20 times better
 - uSID supports summarization. MPLS requires host routes.
- · Lookup efficiency: 2 to 3 times better
 - uSID can process 2 to 3 SIDs in a single lookup (LPM nature)
- Load-balancing: optimum and deterministic
 - uSID provides HW friendly entropy (fixed offset, shallow)

Outperforms VxLAN – Gyan Mishra (Verizon)

- Seamless Host support for Network Programming
 - 6 uSID's in outer DA: RFC2460 IPinIP with opaque DA
- TE in the DC
 - elephant flows exist, asymmetric fabrics exist. TE is needed
- TE in the Metro/Core from the host
 - An SRv6 uSID DC allows for the application to control the network program in the metro/core without complex DPI and protocol conversion at the DC boundary.
- uSID DC provides lower MTU overhead (~5%)
 - Lower MTU overhead means lower DC cost
- · Vendor, Merchant and SONIC/SAI maturity
 - uSID support across DC vendor (Cisco), Merchant (Cisco, Broadcom, Marvell), Sonic/Sai (Alibaba deployment)

SRv6 uSID DC Use-Case Paris 2023

Rich SRv6 uSID Ecosystem

Network Equipment Manufacturers

Merchant Silicon

Open-Source Applications

Open-Source Networking Stacks

Partners

v6

Segment Routing

EANTC 2023 testing

- Successful multi-vendor interoperability test for SRv6 **uSID** over 11 implementations.
- Full BGP-based overlay services over SRv6 uSID with TI-FLA, UPA, and SR-TE.
- Multiple Silicon families from BRCM, Cisco, Huawei, Juniper, Nokia

Multi-Vendor MPLS SDN Interoperability Test Report 2023

https://eantc.de/fileadmin/eantc/downloads/events/2023/EANTC-InteropTest2023-TestReport.pdf

22

SRv6 is Proposed Standard

Architecture

- SR Architecture RFC 8402
- SRTE Policy Architecture RFC 9256

Data Plane

- SRv6 Network Programming RFC 8986
- IPv6 SR header RFC 8754

Control Plane

- SRv6 BGP Services RFC 9252
- SRv6 ISIS RFC 9352
- SR Flex-Algo RFC 9350

Operation & Management

- SRv6 OAM RFC 9259
- Performance Management RFC 5357

Strong Commitment and Leadership

Editor of 96% IE Co-author of 100%

96% IETF RFCs 100% IETF RFCs

Value

Any Service over IP without any shims

- TDM
- Disjointness
- BW
- Latency
- Secured Routing

Better Reliability

0 Net Outage

 in 4 years of
 commercial service &

 50k+ deployed routers

Unified Solution

- No DPI at VxLAN/MPLS boundaries
- No GW

Copyright Maxim Mayorov | Dreamstine.com

Native Host and Cloud

- uSID is in IP
- MPLS is neither in the IP socket nor in the cloud

Seamless Brownfield Deployment

- Alibaba
- Bell
- Swisscom

Value

Any Service over IP without any shims

- TDM
- Disjointness
- BW
- Latency
- Secured Routing

Unified Solution

 No DPI at VxLAN/MPLS boundaries

Native Host and Cloud

- uSID is in IP
- MPLS is neither in the IP socket nor in the cloud

Better Reliability

0 Net Outage

 in 4 years of
 commercial service &

 50k+ deployed routers

Cheaper

- Lower Overhead
- Smaller instructions (8 or 16 bits)
- Elimination of shim's
- HW Linerate

Seamless Brownfield Deployment

- Alibaba
- Bell
- Swisscom

IPv6 uSID

- Most of the nodes just perform classic IPv6 as defined 25 years ago
- Some of the nodes enable and use the uSID network programming by simply using the available space in the outer DA
- SRH is very rarely used but available for ultra-scale use-case

Operator Endorsement across Unified Solution

Dan Voyer Bell Canada Paris 2022 Dan Bernier Bell & NoviFlow Paris 2022 Gyan Mishra Verizon Paris 2023 Dan Bernier Bell Canada Paris 2023

Simplicity Always Prevails

