

IP Measurements

Bart Van de Velde

Sr. Director, Engineering

Networking CTO Office

Problem statement

- The transport SLA is defined by three key metrics: Latency, Loss, and Liveness.
- A key challenge in IP networks is the inherent ECMP nature of the fabric.
- Measuring transport SLAs becomes increasingly complex at scale:
 - 500 edge nodes
 - 16 ECMP paths
 - 1 probe every millisecond

Agenda

- The Problem Statement & Proposed Solution for measuring transport SLA:
 - Scale & HW integration
 - Metrics
 - Standard probe format
 - Cost (CAPEX & OPEX)
 - Routing Correlation
- Example Operators' use-case
 - Goldman Sachs: Hardware Integrated Performance Measurements
 - Colt: Routing Correlated Analytics
- We welcome your feedback
 - The problem statement and the proposed solution
 - Facing the same issues/challenges

Scale

The nature of IP is ECMP

- Simple topologies already exhibit 16 ECMP paths
- The number of ECMP paths grows significantly with larger topologies

Probing neglects the ECMP reality

- Lack of scale to measure all ECMP paths
- Simple probe from Source to Destination.
 - A single 5-tuple. Whatever hashing may be.

A measurement solution MUST:

- Discover and monitor all ECMP paths:
- Provide enough Probes Per Second (PPS) to measure all ECMP paths
- Report accurately across ECMP paths

How many probes per second are needed?

- 500 edges
- 16 ECMP paths
- 1 measurement every msec

8M probes per sec

Problem statement

- Relying on router (or host) CPU for Probe generation/processing:
 - Few thousands of probes per second
 - Lack of scale to measure all ECMP Paths
 - typically, 1000 times not scalable enough
 - coverage is < 0.1%
 - As a result, Operators learn outages from clients (client has been already impacted)

Solution: HW integration

- New HW generation are equipped with offload engines (e.g., dedicated NPU, OAM coprocessors)
- Leverage the offload engine for probe generation/processing
- Significant performance boost
- Million of probes per second compared to few thousands in case of CPU

- As an example, Cisco Silicon One provides up to 14 MPPS
 - Generation
 - Receive & Process

Metrics

Problem statement

- Relying on metric such as min/max/average:
 - DO NOT reflect the experience of the whole client spectrum
- Example:
 - 1 bad path out of 8 ECMP
 - 12.5% of the clients impacted
 - Average hides the issue (only little increase in the Avg)

Solution: Compute a Latency Histogram

- Show the latency distribution across all ECMP Paths.
- Reports the experience of the whole population
- Multi-mode = One/More Bad ECMP

Problem statement

- Round trip time (RTT) measurement
 - Latency = RTT/2
- Network Path are asymmetric
 - Upstream path is different from downstream
 - London-to-Rome path NOT Equal Rome-to-London path
- We can't detect if the issue is in the upstream or down stream path

Solution: One-way measurement

- Latency of upstream and downstream paths are measured independently
 - Time synchronization between the edge nodes.
- Allows the pinpoint of the issue (upstream vs downstream)

Standard

Standard Protocol & Packet format

- Leverage IETF standard protocols
 - RFC8762 Simple Two-way Active Measurement Protocol
 - RFC8972 STAMP extensions
- No custom non-standards protocol
- Packet Format:
 - Outer Encapsulating header:
 - > Any IP Encapsulation
 - > SRv6 uSID/GRE/VxLAN/...
 - STAMP measurement packet:
 - > Alternate Marking bit as part of Flow Label
 - > Flexible STAMP header supporting several deployment models

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
IPv6 Header (SRv6 uSID / VxLAN / GRE / ...)
  Source IP Address = Sender IPv6 Address
   Destination IP Address
                             (Alternate Marking = bit 17)
  Flow Label [19:16] = 0010
  Flow Label [15:0] = Entropy
  Protocol = UDP
  Source Port = As chosen by Sender (one port per CPU)
  Destination Port = USER-DEFINED
   Source Timestamp
   Session ID
  (Optional) Reflection Timestamp
```

Cost

Cost reduction

- Capex Elimination
 - SLA Appliance
 - Router port to appliance
- Opex Elimination
 - Rack Space
 - Power

Routing correlation

Continuous Correlation to Routing

Measured Latency compared to best topology

Measured Latency compared to current topology

- Time-series of Measurements from any P to any Q along any ECMP path
- Time-series of ECMP routed paths from any P to any Q

Inference

- Measurement (PAR, MAD) report SLA degradation (e.g., loss)
- Without any additional measurement, Routing Correlation allows to infer other (SRC, DST) pairs that are also impacted
 - BRU to MAD/LIS/SEV is impacted
 - LON to MAD/LIS/SEV is impacted

Measurements & Routing Correlation

- Time-series of Measurements from any P to any Q along any ECMP path
- Time-series of ECMP routed paths from any P to any Q
- Use-cases
 - Grade a measurement with respect to the current topology
 - Root Cause Analysis
 - Post-Mortem analysis
 - Clustering
 - Inference
 - Planned vs Unplanned Outage

Operators' Use-cases

Goldman Sachs

- Presented at MPLS SD&AI NET WORLD PARIS 2024
 - Michael Valentine, Technology Fellow, Network Architecture, Goldman Sachs (Link)

Requirements for ECMP-aware measurements

- Enough PPS
 - Need to spray probes across ALL ECMP paths
 - IP fabric with 100 edge nodes, 192 ECMP paths, and 100 measurements per second:
 - > A fabric edge node needs to process 100 * 192 * 100 = 1.92 M probes per second
 - Current solutions provide 100-1000 times less
- Accurate metrics
 - Current reporting based on (min, max, avg) is insufficient
 - Need to have a representation of the entire population, all ECMP paths
 - Percentile or Histogram based

Integrated Performance Measurement

- Built-in measurement from the routers using dedicated engine in Silicon 1 ASIC
- · Scale, Richness, Cost Reduction
- 14MPPS generation & 14 MPPS ingestion
- Standard-based proving: STAMP (RFC8762/RFC8972)
- 3L's for each probe:
 - one-way latency (usec accuracy, histogram)
 - liveness (sub-2ms)
 - absolute loss (instead of deductions)
- Currently testing in the lab

Goldman Sachs – Takeaways

- Legacy Performance monitoring solutions neglect the ECMP reality
 - 100's of ECMP paths cannot be measured with 1 single probe
- Before extra routers we deployed to be used to do probing (IP SLA)
 - Difficult to mange, lots of touch points and products
 - Over the top app probes give vague answers, problem between DC1 and DC2, etc...
- Requirements for ECMP-aware measurements
 - Enough PPS: measure all edges to all edges across all ecmp paths
 - Accurate metrics: current reporting based on (min, max, avg) is insufficient
- IP Measurements:
 - Built-in measurement from the routers using dedicated engine in Silicon 1 ASIC
 - 14MPPS generation & 14 MPPS ingestion
 - Standard-based: STAMP (RFC8762/RFC8972)
 - 3L's for each probe: one-way latency, liveness, Loss
- Currently testing in the lab

Colt

- Presented at MPLS SD&AI NET WORLD PARIS 2024
 - Bart Janssens, Senior Specialist Packet Architecture, Colt Technology Services (Link)

Colt – Takeaways

- Routing Analytics is a key for Colt's Journey for Network as a service (NAAS). The journey includes:
 - Deploying Network probes at different parts in the network
 - Adopting new generation silicon for more efficient power
 - Routing Analytics: new set of apps that collect information from the network and deliver intelligence
 - Skylight Analytics: the portal where all the data are brought together.
- Colt 1st use-case: Service consumption visualization
 - Routing Analytics:
 - > Collects BGP-LS topology real time
 - > Augment the topology with the IP Measurement data and other telemetry data such as wattage
 - > Computes the Path and associated latency hop-by-hop and other
 - Skylight Analytics:
 - > Visualize the service path and associated latency and wattage hop-by-hop
 - Deployed in production at Colt
- This is a one step in Colt journey to deliver cloud-like services and using AI for operating the network.

Conclusion

- Legacy performance monitoring solutions:
 - Lack of scale to measure all ECMP Paths
 - Lack of accurate metrics: min, max, avg are not sufficient and does not show the problem
 - Capex and Opex cost
- IP Measurements:
 - HW Built-in measurement from the routers
 - Standard-based: STAMP (RFC8762/RFC8972)
 - Latency histogram, Absolute Loss, Liveness in HW
 - Routing Analytics: Routing and Measurement correlation
- Customer deployments and use-cases:
 - Goldman Sachs Presented at MPLS SD&AI NET WORLD PARIS 2024
 - Colt Presented at MPLS SD&AI NET WORLD PARIS 2024

· I | I · I | I · I CISCO