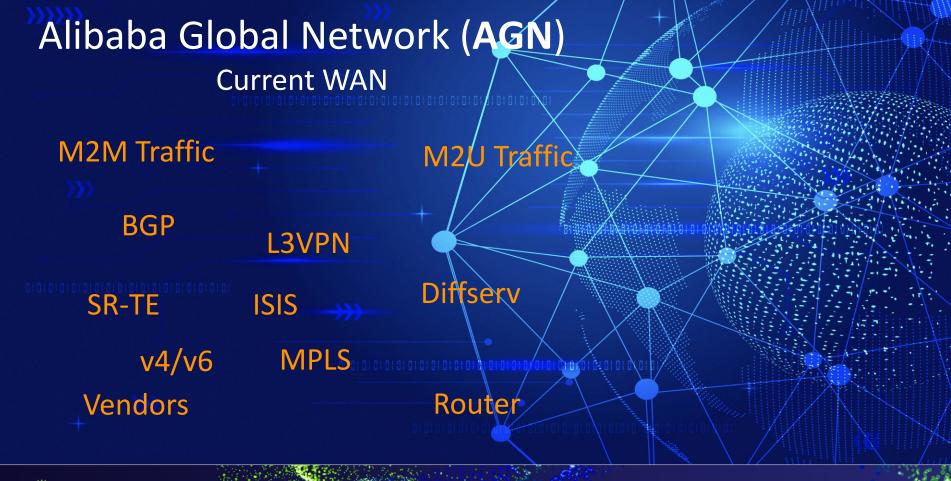

eCore

Network Architecture and Whitebox Evolution of Alibaba's Service-Oriented DCI Network

Dennis Cai (presenting on behalf of Roy Jiang), Alibaba Cloud

Manish Mukherjee, Cisco

eCore

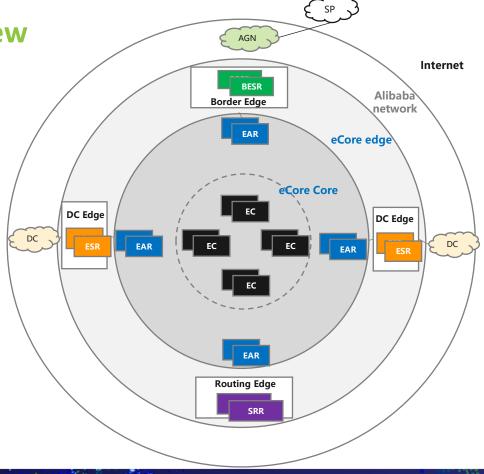

Network Architecture and Whitebox Evolution of Alibaba's Service-Oriented DCI Network

Dennis Cai (presenting on behalf of **Roy Jiang**), Alibaba Cloud Manish Mukherjee, Cisco

Alibaba Cloud Global Network Footprint

eCore – Alibaba's Next Generation Predictable DCI Network

Architectural Goals Design Principles Operation Excellence Simplicity Single-chip & Single Stack **Simplicity** Composable Architecture Easy to scale **Build and operate DCI** Stability like DCN (fully automated) Minimize Blast Radius Service-Oriented Network Service-Oriented with Massive Scale


High Level Architecture Overview

Edge

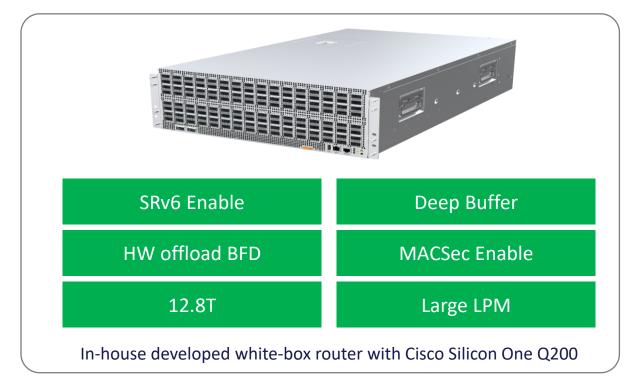
- Role
 - SRv6 VPN PE router overlay
- Categories
 - DC edge ESR
 - Border edge BESR
 - Routing edge SRR (Service Route Reflector)

Core

- Role
 - SRv6 VPN P router underlay
 - SRv6 Traffic Engineering
- Layers
 - · National Core EC
 - Regional Core EAR (collocated with ESR)

Single-chip & Single-Stack

Single Chip


- Pizza-box
- NO chassis

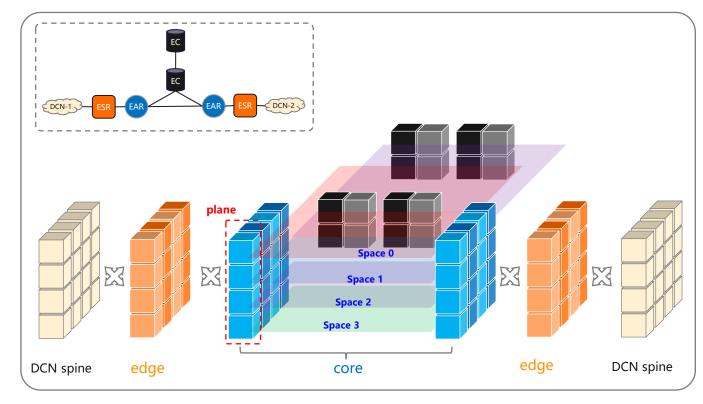
Single Stack

- SRv6 only
- NO MPLS

In-house Developed Software

- AliNOS (based on SONiC)
- Feature velocity + live patch

Dual-NOS/dual-chip: commercial pizza box from H3C/Ruijie with BRCM ASIC


Composable Architecture

Standard Network Modules

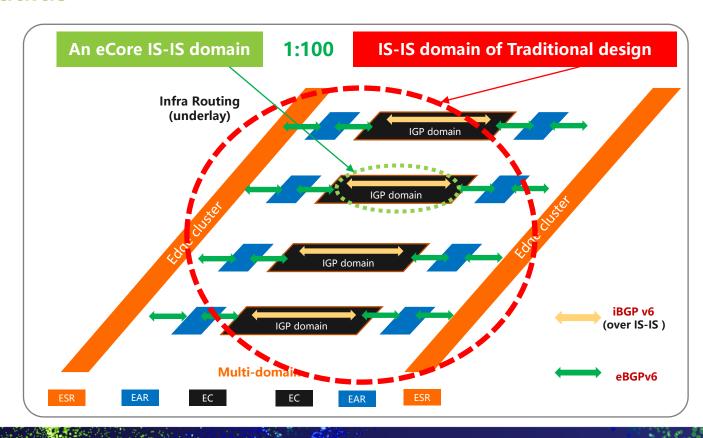
Node/Cluster/Group

Elastics and Resilience

- Multi-Plane (redundance)
- Multi-Space (capacity scaling)
- Multi-Routing Domain (failure isolation, small blast radius)

Minimize Blast Radius

IS-IS minimized


- ISIS domain = EC plane
- iBGP next-hop resolution only

BGP Underlay Routing

- SRv6 Inter-domain friendly
- NO MPLS LSP

Seamless Migration from Legacy MPLS Core

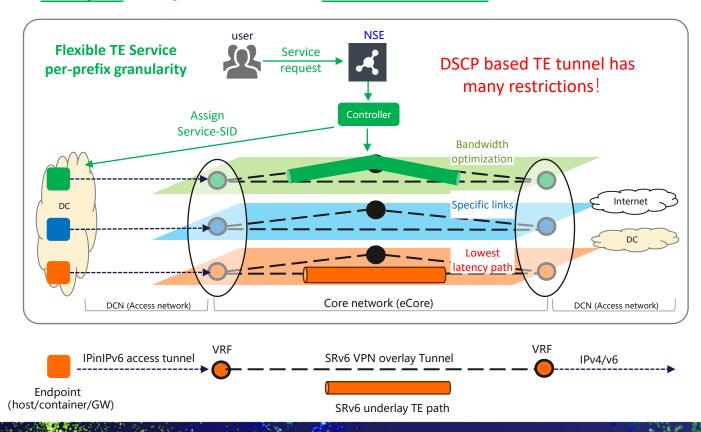
- SRv6 VPN over 6PE MPLS Core
- SR-MPLS TE

Service-Oriented: A Simple Way to Provide More Flexible TE Service

SRv6 VPN Overlay

- Service-SID (End.DT46)
- TE-Class + VPN

Very large SID space to represent flexible and granular TE services


SRv6 TE Underlay

- TE SID (uN/uA)
- SRv6 policy + controller

SRv6 Tunnel Access

 IPinIPv6 terminated in VRF (End.DT46)

A simple way to steer traffic into SRv6 TE tunnel

Engineering Challenges and Solutions

Pizza Box **TE-Class Based VPN BGP Distance Vector Routing** Design **Node Explosion Underlay Routing Overlay Route Challenges Slow Convergence** Replication LAG + ECMP **Prefix Independent** Solutions **Anycast SID SID Marking** Convergence(PIC)

Implementation

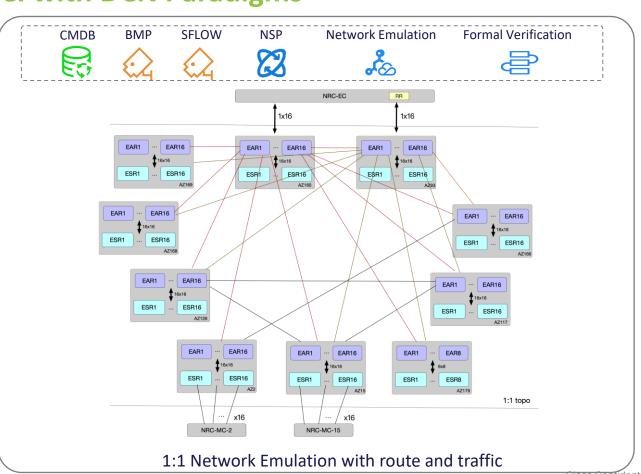
SONIC Phoenix Wing initiative SRv6 VPN, SRV6 Policy, FIB loading time optimization, PIC, etc

Build and Operate DCI with DCN Paradigms

Deployment

Fully automated, like DCN

Service Monitoring


Per-service measurement

Software Upgrade

Live patch, fast upgrade

Verification

1:1 emulation with vSonic & formal verification for routing

Deployment Experience

Automatic tools speed-up massive rolling out

(new region from months to weeks)

Service monitoring is key to detecting/locating failure

(0 P1/P2 outage)

(no more ISSU)

Deployment: from big router to DCN-like whitebox system

- eCore deployment in first region ~100 devices in 2 months with script tool
- Latest region deployment 300 devices in 2 weeks with fully automated systems (modeling, auto-configuration, emulation, etc)

A silent packet drop case caused by a hardware defect

- Used to take a few hours to detect and locate
- Now detected in 1 min with service monitoring tool
- And located in 1 min with SFLOW based analysis

Network-wide bug fix

- Live patch on thousands of devices in just 1-2 weeks
- Traditional way of image upgrade needs a few months

eCore – the Results

Pain Points of AGN

- Device/protocol complexity
- Big failure domain and slow convergence
- High CAPEX and OPEX
- Supply-chain risk and feature velocity
- Rigid traffic engineering

eCore's Advantages

Pizza Box Single chip & single stack (SRv6)

1/100 10 x Fast convergence ISIS domain size

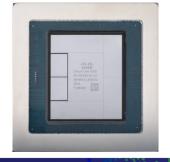
50% **CAPEX** reduction **Operation Excellence** Fully automated

10 x Feature velocity (within weeks)

per-prefix Granularity TE

Acknowledgements

Special thanks to the Cisco Segment Routing team and Silicon One team for their outstanding support and collaboration in open communities—especially during the early stages of SRv6 Micro-SID and its implementation on our white-box platforms.


RFC 9800 - Compressed SRv6 Segment List Encoding (June 2025)

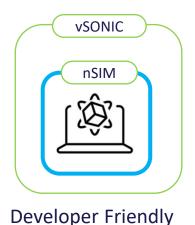
Quantum Cat - 51.2T Alibaba | Cisco P200

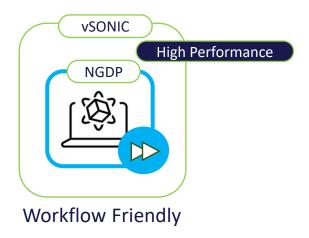
- Alibaba In-house developed 51.2T routing system
- 2xSKUs:
 - 128 * 400GE
 - 64 * 800GE
- Planned production by Q1CY26
- Powered by Cisco Silicon One P200

Silicon One P200 – Software Spotlights

Digital Twin

Programmability



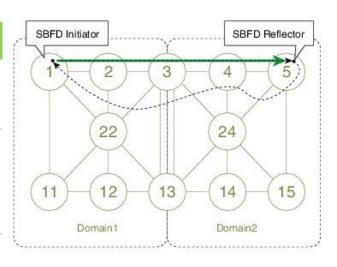


October 13-16, 2025 San Jose, California

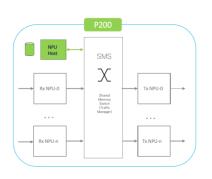
P200 Digital Twin

Integrate software months before Silicon arrives

Enable Network Emulation


Enable Faster Software Development, CI-CD

Silicon One P200 - Software Spotlights *Programmability | S-BFD Offload*



Seamless BFD (S-BFD) – RFC 7880

Feature	Initiator	Reflector
State Machine	Stateful - Maintains BFD state machine and detection mechanism	Stateless
Packet Handling	Generates and sends S-BFD control packets.	Receive and reflect S-BFD control
	SRv6 encap to monitor TE paths	packets
Role	Monitor forwarding path and trigger a response	Swap SIP/DIP, discriminators

Programmability: Seamless BFD (S-BFD) Offload with P200

Session Scanner:

Periodic initiation

Periodic Send:

P4 generates S-BFD payload + headers Routed by normal pipeline

Receive + Session Update:

P4 updates stateful session entry

Timeout Scanner:

Notify CPU if S-BFD session is detection "down"

- Thousands of stateful aggressive sessions
- SRv6 encap allows monitoring all paths

Reflect:

- Validate own discriminator
- Swap header fields
- Send back to Initiator

Unlimited Reflector session scale (millions of PPS)

Silicon One P200 - Software Spotlights

SRv6 Update

October 13-16, 2025 San Jose, California

Enhancing SRv6 in SAI – Great Partnership with Alibaba

Category	Contributions	Status
Service Overlay and VPN	SRv6 VPN SID	Contributed
Traffic Engineering and QOS Policy	Class-based forwarding	Contributed
	SRv6 Encap for BFD HW Offload	Contributed
OAM and Fast Failure Detection	Seamless BFD (S-BFD) HW Offload - https://github.com/opencomputeproject/SAI/pull/2220	PR Opened
	Path Tracing	Contributed
Performance Telemetry and Path Visibility	SID Marking - https://github.com/opencomputeproject/SAI/pull/2222	PR Opened
	IPM - Integrated Performance Measurement	Upcoming

Silicon One P200 – Silicon, Systems, Software – Available Now!

ALINOS

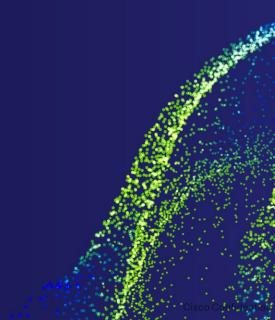
IOS-XR, NX-OS

Common SAI

Common P4 and SDK

Alibaba Quantam Cat

Cisco 8223



- 512x112G Serdes
- **16GB** HBM deep-buffering
- **Software-selectable** Standalone or LC/DSF modes
- 10M+ IPv4/IPv6 routes
- **64K** ACL entries per forwarding engine (x16)
 - 1M+ ACL with prefix compression
- Fully Programmable Run-to-Complete NPU
- Rich DCI & Routing feature set
- **Integrated MACSec and TunnelSec**
- SAI / SONIC on Day-1

Call to Action

- SONiC Routing Working Group Phoenix Wing enabling SRv6 in community SONiC: https://lists.sonicfoundation.dev/g/sonic-wg-routing
- eCore's design & implementation will be open/opensourced
 (Stay tuned for the upcoming release of the eCore Deployment Report/Paper)
 hopefully could help the industry to resolve the WAN issues existing for decades

Thank You!

