Segment Routing Traffic Engineering

Jose Liste
Technical Marketing Engineer
jliste@cisco.com

www.isocore.com/2015

Agenda

- What is Segment Routing Traffic Engineering?
- Use Case: Intra-Domain Latency Opt. + Constrains
- Use Case: Inter-Domain SRTE Disjointness
- Use Case: Dynamic SRTE policies to BGP NH
- Segment Routing Traffic Matrix

Segment Routing

- Source Routing
 - Source chooses a path and encodes it in the packet header as an ordered list of segments
 - Rest of the network executes the encoded instructions without any further per-flow state
- Segment: an identifier for any type of instruction
 - Forwarding or service
- Allows explicit routing / constraint-based routing SR Traffic Engineering (SRTE)
- Strikes a balance between distributed and centralized intelligence

Traffic Engineering with Segment Routing

- SRTE brings innovative solutions to address TE problems
 - IP-centric (ECMP aware), Scale (no state / Inter-AS) and Simplicity
- Extensive scientific research backing new SRTE algorithms (1)
 - Applicable to both Controllers (centralized) and Routers (distributed)
- Uses existing ISIS / OSPF extensions to advertise link attributes
- No extra protocol to establish LSPs (no midpoint state)

Default IGP metric: 10

Traffic Engineering with Segment Routing

- SRTE uses a "Policy" (SID-list) to steer traffic through the network
- Policy path can be computed by router or controller
- SID list pushed by head-end
- Rest of network executes instructions embedded in the SID list

SRTE Policy instantiated from configured tunnels

Instantiate SRTE Policy from configured tunnel

- SRTE Policies can be instantiated from an interface tunnelte configuration
 - The desired characteristics of the SRTE Policy are specified in the tunnel-te interface configuration
 - A path-option, configured under tunnel-te interface, specifies how the path of the instantiated Policy is derived (explicit or dynamic)
- A simple example:

```
interface tunnel-te 1
ipv4 unnumbered Loopback0
destination 1.1.1.10
tunnel-te source address
tunnel-te destination address
path-option 1 dynamic segment-routing
SRTE path-option
```

Use Case: Intra-Domain Latency Optimization with Constrains (Affinity)

Dynamic Path

- The path of an SRTE Policy instantiated from a configured tunnel-te can be dynamically calculated
- Allows to specify optimization objective and constraints

Use Case – Latency Optimization + Affinity

- The links to Node4 and Node8 are to be avoided
 - Operator marks these links with admin-group/color "ORANGE"
- Path of tunnel-te1, from Node1 to Node10, must avoid links with "ORANGE" color while optimizing for latency (based on TE metric)

IGP metric: 10

Default TE metric: 10

Use Case – Latency Optimization + Affinity

Node1 configuration under tunnel-te:

Shipping functionality

```
mpls traffic-eng
 affinity-map ORANGE bit-position 8
interface tunnel-te 1
 ipv4 unnumbered Loopback0
 destination 1.1.1.10
 path-selection
  metric te
                                                                       IGP metric: 10
                                                                   Default TE metric: 10
 affinity exclude ORANGE
 path-option 1 dynamic segment-routing
```

The color "ORANGE" is represented by bit 8 in the affinity bitmap

Use Case: Inter-Domain SRTE Disjointness

Use Case Highlights

Operator Requirements

- Service Disjointness from pair of sources to pair of destinations in a Multi-Domain network
- Stringent 150msec end-to-end path protection

Solution

- Centralized multi-domain topology discovery and path calculation
- End-to-end SRTE disjoint policies with explicit path-options
- Primary path and secondary path per policy
- TI-LFA for local protection and BFD (over SR-TE) for path protection

Inter-AS SRTE Disjointness

Inter-AS SRTE Disjointness

```
interface tunnel-tel
 ipv4 unnumbered Loopback0
bfd
  fast-detect sbfd
                                           BFD over SR-TE
 multiplier 3
 minimum-interval 50
                                       Policy with two (2) paths
 destination 1.1.1.2
path-protection
path-option 10 explicit name PRIMARY segment-routing protected-by 20
path-option 20 explicit name SECONDARY segment-routing protected-by 10
```


Inter-AS SRTE Disjointness

Ships in Jan. 2016

```
explicit-path name PRIMARY
                                                         Loopback IP (local AS)
 index 10 next-address strict ipv4 unicast 1.1.1.A2
 index 20 next-address strict ipv4 unicast 1.1.1.A3
 index 30 next-label A3A4
                                                        NNI label – MPLS static
 index 40 next-label 160A5
 index 50 next-label 160A6
                                                         Prefix SID (remote AS)
explicit-path name SECONDARY
 index 10 next-address strict ipv4 unicast 1.1.1.C2
 index 20 next-address strict ipv4 unicast 1.1.1.B3
 index 30 next-label B3B4
 index 40 next-label 160C5
 index 50 next-label 160A6
1.1.1.A2: loopback of A2
A3A4: mpls static label A3→A4
160A5: prefix-SID of A5
                                                         AS X
                                                                      AS Y (Backbone)
```

Dynamic SRTE policies to BGP next-hops (aka BGP SRTE)

Objective

- Trigger automatic TE policies for traffic to VPN destinations
 - Policies that meet customer / application SLA (e.g. latency optimized)
- Without any pre-configured TE tunnel at ingress PE
- Without typical PBR performance tax

Default TE cost: 10

```
route-policy BGPTE-LL
   if community matches-every (100:1) then
      set mpls traffic-eng attribute-set TE-LL
router bgp 1
 neighbor 1.1.1.4
  address-family vpnv4 unicast
   route-policy BGPTE-LL in
mpls traffic-eng
  attribute-set p2p-te TE-LL
   path-selection metric te
                                                                  Default IGP cost: 10
                                                                  Default TE cost: 10
```


Ships in

Nov. 2015

BGP SRTE Dynamic - Benefits

- Significant configuration simplification
 - ZERO tunnel configuration !!!
 - A few optimization templates are configured, the same across all the ingress PE's, each optimization template is identified by a BGP policy based on communities
- Automated steering of BGP routes on the right path
 - Dataplane performant
- BGP PIC FRR dataplane protection is preserved
- BGP NHT fast control plane convergence is preserved

SR Traffic Matrix (TM) Collection

Automated Traffic Matrix Collection

- Traffic Matrix is fundamental for
 - Capacity planning
 - Centralized traffic engineering
 - IP/Optical optimization
- Provides volume of traffic T_{i,j} from i to j
 over a time interval, for every ingress point
 i and every egress point j
- Most operators do not have an accurate traffic matrix
- With Segment Routing, the traffic matrix collection is automated

Streaming Telemetry

SR Traffic Matrix Statistics

 Measures traffic entering TM border from external interfaces towards destination prefix-SIDs

- Base Pcounter¹ for Prefix-SID(N)
 - Accounts any packet switched on the Prefix-SID(N) FIB entry
- TM Pcounter¹ for Prefix-SID(N)
 - Accounts any packet from an external interface and switched on the Prefix-SID(N) FIB entry
- TM stats collected by Streaming Telemetry

•••• Streaming Telemetry session

Note 1: Pcounter: pair of (packet, byte) counters

Enable Statistics Collection

Ships in Nov. 2015

 Minimal Traffic Collector (TC) configuration Red interfaces marked "external"

traffic-collector

 With this configuration, TC periodically collects Prefix-SID Base and TM Pcounters and Tunnel-te Pcounters and keeps their the history

Link to a customer, peer or transit

Link within the AS

TM and Base Counter History Database

```
RP/0/RSP0/CPU0:R1#show traffic-collector ipv4 counters prefix 1.1.1.3/32 detail
Prefix: 1.1.1.3/32 Label: 16003 State: Active
Base:
                                                                     Base Pcounters
   Average over the last 5 collection intervals:
        Packet rate: 9496937 pps, Byte rate: 9363979882 Bps
                                                                    Average packet /
    History of counters:
        23:01 - 23:02: Packets 9379529, Bytes: 9248215594
                                                                        byte rates
        23:00 - 23:01: Packets 9687124, Bytes: 9551504264
        22:59 - 23:00: Packets 9539200, Bytes: 9405651200
        22:58 - 22:59: Packets 9845278, Bytes: 9707444108
        22:57 - 22:58: Packets 9033554, Bytes: 8907084244
                                                                     TM Pcounters
 M Counters:
    Average over the last 5 collection intervals:
        Packet rate: 9528754 pps, Byte rate: 9357236821 Bps
   History of counters:
        23:01 - 23:02: Packets 9400815, Bytes: 9231600330
                                                                    Pcounter history
        23:00 - 23:01: Packets 9699455, Bytes: 9524864810
                                                                   Packet / byte count
        22:59 - 23:00: Packets 9579889, Bytes: 9407450998
        22:58 - 22:59: Packets 9911734, Bytes: 9733322788
        22:57 - 22:58: Packets 9051879, Bytes: 8888945178
```

Conclusion

- SRTE brings a fundamentally different way to look at TE
- New algorithms backed by research
- Applicable to both centralized and distributed path computation scenarios
- SRTE is now REAL with live deployments to occur in CY2016

References / Contact us

- This presentation covered only a subset of the committed projects ... More is coming
- Like to share your usecase / questions / concerns: <u>ask-segment-routing@cisco.com</u>
- Detailed SR tutorials at: http://www.segment-routing.net/

THANK YOU

Use Case: Intra-Domain Explicit Path

Path-option explicit segment-routing

Shipping functionality

- SRTE Policy path can be explicitly specified by configuring a segment list as an ordered list of IP addresses and/or label values
- Each of the entries in the ordered list represents a segment
- Example configuration on Node1:

```
explicit-path name PATH1
index 10 next-address 1.1.1.3 !! Prefix-SID(3)
index 20 next-address 99.3.4.4 !! Adj-SID(3-4)
index 30 next-address 1.1.1.10 !! Prefix-SID(10)
!
interface tunnel-te1
ipv4 unnumbered Loopback0
destination 1.1.1.10
path-option 1 explicit name PATH1 segment-routing
```


Router-id of NodeX: 1.1.1.X
Prefix-SID index of NodeX: X
Link address XY: 99.X.Y.X/24 with X<Y
Adj-SID XY: 240XY

Dynamic SRTE policies to BGP next-hops Prepended Segments

BGP SRTE – Prepended (anycast) Segments

- BGP SRTE can also be used to force traffic to destination to step via prepended (Anycast) segments
- Use Cases:
 - Dual-plane disjointness (e.g. go via plane 1's Anycast SID)
 - Low-latency in international topology (e.g. go via country XYZ Anycast SID)

Prepend – Plane Disjointness

Prepend – Plane Disjointness

Ships in Nov. 2015

```
route-policy BGPTE-PLANE-BLUE
   if community matches-every (100:1) then
      set mpls traffic-eng attribute-set TE-BLUE
                                                                   SID: 16111
                                                      111
                                                          SID: 16111
                                                                            SID: 16111
                                                                   SID: 16222
                                                                                    SID: 16065
mpls traffic-eng
  auto-tunnel p2p tunnel-id min 1000 max 5000
  attribute-set p2p-te TE-BLUE
                                                         SID: 16222
                                                                           SID: 16222
                                                                                    8.0.0.1/24
   index 1 mpls label 16111
   index 2 bgp-nhop
                                                                                    CISCO
```

Prepend – Plane Disjointness

Ships in Nov. 2015

