
Clarence Filsfils

Kris Michielsen

SR Traffic-Engineering

Acknowledgements

• Bertrand Duvivier

• Jose Liste

• Stefano Previdi

Disclaimer

“Many of the products and features described herein remain in
varying stages of development and will be offered on a when-
and-if-available basis. This roadmap is subject to change at
the sole discretion of Cisco, and Cisco will have no liability for
delay in the delivery or failure to deliver any of the products or
features set forth in this document.”

Illustration Conventions

• For NodeX:

– Loopback address: 1.1.1.X/32

– SRGB: [16000 – 23999]

– Prefix-SID: 16000 + X

• For link NodeX→NodeY:

– Interface address: 99.X.Y.X/24 (where X<Y)

– Adjacency-SID: 30X0Y

• Link metric notation

– IGP & TE metric: xx (default: 10)

– IGP metric: I:xx (default: I:10)

– TE metric: T:yy (default: T:10)

1 2

1

1.1.1.1/32

16001

2 3
I:20

T:100

1
20

Key IETF document for SRTE

RSVP-TE

• Little deployment and many issues

• Not scalable

– Core states in k×n2

– No inter-domain

• Complex configuration

– Tunnel interfaces

• Complex steering

– PBR, autoroute

n: #head-ends; k: #ECMP

SRTE

• Simple, Automated and Scalable

– No core state: state in the packet header

– No tunnel interface: “SR Policy”

– No head-end a-priori configuration: on-demand policy instantiation

– No head-end a-priori steering: automated steering

• Multi-Domain

– SR PCE for compute

– Binding-SID (BSID) for scale

• Lots of Functionality

– Designed with lead operators along their use-cases

MPLS and SRv6

• The SR and SRTE architecture applies to MPLS and IPv6
data plane implementations

• This document focuses on the MPLS data plane
implementation

– IPv6 data plane implementation (SRv6) will be added in a future revision
of this document

SR Policy

SR Policy Identification

• An SR Policy is uniquely identified by a tuple
(head-end, color, end-point)

Head-end: where the SR Policy is instantiated (implemented)

Color: a numerical value to differentiate multiple SRTE Policies
between the same pair of nodes

End-point: the destination of the SR Policy

• At a given head-end, an
SR Policy is uniquely identified
by a tuple (color, end-point)

2 3

7 6

4

1

5

SR Policy

(1, green, 4)

Head-end: 1

Color: green

End-point: 4

SR Policy Color

• Each SR Policy has a color

– Color can be used to indicate a certain treatment (SLA, policy) provided by an SR Policy

• Only one SR Policy with a given color C can exist between a given node
pair (head-end (H), end-point (E))

– In other words: each SR Policy triplet (H, C, E) is unique

• Example:

– Low-cost=“blue”, Low-delay=“green”

– steer traffic to 1.1.1.0/24 via Node4
into Low-cost SR Policy (1, blue, 4)

– steer traffic to 2.2.2.0/24 via Node4
into Low-delay SR Policy (1, green, 4)

2 3

7 6

4

1

5

(1, green, 4)

(1, blue, 4)

1.1.1.0/24

2.2.2.0/24
Low-delay

Low-cost

SR Policy – Candidate Paths

• An SR Policy consists of one or more candidate paths (Cpaths)

• An SR Policy instantiates one single path in RIB/FIB

– the selected* path, which is the preferred valid candidate path

• A candidate path is either dynamic or explicit

* See further.

SR Policy Cpath1

Cpath2

Cpathn

...

Candidate

Paths

SR Policy – Candidate Path

• A candidate path is a single segment list (SID-list)
or a set of weighted* SID-lists

– Typically, an SR Policy path only contains a single SID-list

• Traffic steered into an SR Policy
path is load-shared over all
SID-lists of the path

SID = Segment ID

* For Weighted Equal Cost Multi-Path (WECMP) load-sharing. See further.

SR Policy

Cpathn

...

Cpath1
...

SID-list1m

Weight1m

SID-list11

Weight11

...

SID-listnk

Weightnk

SID-listn1

Weightn1

Dynamic Path

• A dynamic path expresses
an optimization objective and a set of constraints

• The head-end computes a solution to the optimization
problem as a SID-list or a set of SID-lists

• When the head-end does not have enough topological
information (e.g. multi-domain problem), the head-end may
delegate the computation to a PCE

• Whenever the network situation changes, the path is
recomputed

...

SID-listk

Weightk

SID-list1

Weight1

Dynamic path

Optimization

Objective

Constraints

compute
path

Explicit Path

• An explicit path is an explicitly specified SID-list or set of SID-
lists

Explicit path ...

SID-listk

Weightk

SID-list1

Weight1

SID11 SID12 SID1n

SIDk1 SIDk2 SIDkm

Candidate Paths

• A candidate path has a preference

• A candidate path is associated with a single Binding-SID

• A candidate path is valid if it is usable

– The validation rules are
defined in a later section

SR Policy

Cpathn

Preferencen

...

Cpath1

Binding-SIDn

Preference1

Binding-SID1

SID-list1m

...

Weight1m

SID-list11

Weight11

SID-listnk

...

Weightnk

SID-listn1

Weightn1

Candidate Paths (Cont.)

• A head-end may be informed about candidate paths for an
SR Policy (color, end-point) by various means including: local
configuration (CLI), NETCONF, PCEP, or BGP

NETCONFCLI

PCEPBGP

SRTE

Path Selection

• A path is selected for an SR Policy (i.e. it is the preferred
path) when the path is valid AND its preference is the best
(highest value) among all the candidate paths of the SR
Policy

• The protocol source of the path does not matter in the path
selection logic

Path’s source does not influence selection

SR Policy

(Head, Color, End)

SID-list11

<16003,

 16004>

Weight 1

SID-list12

<16004>

Weight 4

Cpath1

Pref 110

SID-list21

<16004>
Cpath2

Pref 100

Provided by

e.g. local configuration

Provided by

e.g. BGP SRTE
V

A
L
ID

V
A

L
ID

V
A

L
IDCpath3

Pref 200

SID-list31

<16005,

 16004>

Selection of a new preferred path

• Whenever a new candidate path (Cpath) is learned or the
validity of an existing Cpath changes or an existing Cpath is
changed, the selection process must be re-executed

Selection of a new preferred path

SR Policy

(Head, Color, End)

SID-list21

<16004>
Cpath2

Pref 100

Cpath3

Pref 200

SID-list31

<16005,

 16004>

Provided by

e.g. local configuration

Provided by

e.g. BGP SRTE
V

A
L
ID

V
A

L
ID

IN
V

A
L
ID

SID-list11

<16003,

 16004>

Weight 1

SID-list12

<16004>

Weight 4

Cpath1

Pref 110

Segment ID (SID)

• A SID can either be expressed as

– A SID (label value)

– A SID descriptor (used to identify or resolve a SID, e.g. IP address)

• Why?

– Support inter-domain

>SID descriptors in remote domains cannot be resolved by the head-end and hence must
be expressed as a resolved label

– Validation control

>SIDs expressed as label values are not validated (except the first SID in the list)

> If the designer wants the head-end to validate a SID and that SID is in the SRTE DB of
the head-end, then the designer should express it as a SID descriptor

Invalid SID-list

• A SID-list is invalid as soon as:

– It is empty

– The head-end is unable to resolve the first SID into one or more outgoing
interface(s) and next-hop(s)

– The head-end is unable to resolve any non-first SID that is expressed as a
SID descriptor

• The head-end of an SR Policy updates the validity of a SID-list upon
network topological change

Invalid SR Policy candidate path

• An SR Policy candidate path is invalid as soon as it has
no valid SID-list

SR Policy

Cpathn

...

Cpath1
...

SID-list1m

Weight1m

SID-list11

Weight11

...

SID-listnk

Weightnk

SID-listn1

Weightn1

✘

✘
✘

✘ valid

✘ invalid

Invalid SR Policy

• An SR Policy is invalid when
all its candidate paths are invalid

SR Policy

Cpathn

...

Cpath1
...

SID-list1m

Weight1m

SID-list11

Weight11

...

SID-listnk

Weightnk

SID-listn1

Weightn1

✘

✘
✘

✘

✘

✘

✘

 valid

✘ invalid

SR Policy invalidation behavior

• If an SR Policy becomes invalid, the invalidation behavior is
applied

– By default: SR Policy forwarding entries are removed and traffic falls
back to its default forwarding path (e.g. IGP shortest path)

– If “invalidation drop” behavior is specified, then the SR Policy forwarding
entry (Binding-SID) is kept, but modified to drop all traffic that is steered
into the SR Policy

• The SID-list of an SR Policy is the SID-list or set of SID-lists
of its selected path

• In practice, most use-cases
have a single SID-list per
candidate path

V
A

L
ID

V
A

L
ID

SID-list of an SR Policy

SR Policy

Cpathn

Preferencen

...

Cpath1

Binding-SIDn

Best Pref

Binding-SID1

SID-list1m

...

Weight1m

SID-list11

Weight11

SID-listnk

...

Weightnk

SID-listn1

Weightn1

• The BSID of an SR Policy is the BSID of the selected path

V
A

L
ID

V
A

L
ID

Binding-SID (BSID) of an SR Policy

SR Policy

Cpathn

Preferencen

Cpath1

Binding-SIDn

Best Pref

Binding-SID1

SID-list1m

...

Weight1m

SID-list11

Weight11

SID-listnk

...

Weightnk

SID-listn1

Weightn1

...

An SR Policy should have a stable BSID

• In all the use-cases known to date, all the candidate paths associated with
a given SR Policy have the same BSID

– Recommendation: design like this!

• One may thus assume that in practice an SR Policy has a stable BSID
that is independent of selected-path changes

• One may thus assume that in practice a BSID is an ID of an SR Policy

• However, one should know that a BSID may change over the life of an SR
Policy and the true identification of an SR Policy is the tuple (head-end,
color, end-point)

Active SR Policy

• An SR Policy (color, end-point) is active at a head-end as
soon as this head-end knows about a valid candidate path for
this policy

• An active SR Policy installs a BSID-keyed entry in the
forwarding table with the action of steering the packets
matching this entry to the SID-list(s) of the SR Policy

Active SR Policy – FIB entry

2 3

6 5

41

20

Default link metric: 10

10GE

40GE

SR Policy

SID-list:

<16003,

 16004>

Selected

Path

BSID:

40104

Forwarding table on Node1

In Out Out_intf Fraction

40104 <16003, 16004> To Node2 100%

Weighted ECMP (WECMP)

• If a set of SID-lists is associated with the selected path of the SR Policy,
then the steering is flow and WECMP-based according to the relative
weight of each SID-list

2 3

6 5

41

20

Default link metric: 10

10GE

40GE

1/5

of load

4/5

of load

SR Policy

SID-list1:

<16003,

 16004>

Weight 1

SID-list2:

<16004>

Weight 4

Selected

Path

Active SR Policy – FIB entry – WECMP

2 3

6 5

41

20

Default link metric: 10

10GE

40GE

SR Policy
Selected

Path

BSID:

40104

Forwarding table on Node1

In Out Out_intf Fraction

40104
<16003, 16004> To Node2 20%

<16004> To Node6 80%

SID-list:

<16003,

 16004>

SID-list:

<16004>

Weight 1

Weight 4

Configuration

Head-end SRTE DB – IGP config

• Enable the following command under ISIS/OSPF to feed the
SRTE DB on the head-end:

• Note: in multi-domain networks, an instance-id must be
specified with this command

– See further in this deck for details

router isis 1
 distribute link-state

router ospf 1
 distribute link-state

Head-end TE Router-ID – IGP config

• Best Practice to configure the TE router-ID in the IGP

– The implementation assumes this configuration

router isis 1
 address-family ipv4 unicast
 router-id Loopback0

Head-end SR-TE Policy Source Address

• By default, SR-TE uses the global router-ID as source address

– This router-ID is automatically determined, and is typically the IPv4
address of the lowest numbered loopback

• Best Practice to configure the SR-TE source address

– The implementation assumes this configuration

RP/0/RP0/CPU0:R2# show arm router-ids
Router-ID Interface
1.1.1.2 Loopback0

segment-routing
 traffic-eng
 candidate-paths
 all
 source-address ipv4 1.1.1.2

Automatically selected
router-id

ARM = Address Repository Manager

SR Policy – configuration example

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.4
 binding-sid mpls 1000
 candidate-paths
 preference 100
 dynamic
 metric type te
 constraints
 affinity
 exclude-any name red
 !
 preference 200
 explicit segment-list SIDLIST1
 !
 segment-list name SIDLIST1
 index 10 mpls label 16002
 index 20 mpls label 30203
 index 30 mpls label 16004

SRTE

On Node1:

2 3

6 5

41

20

Default link metric: 10

SR Policy

segment-routing
 traffic-eng
 affinity-map
 name red bit-position 0

SR Policy – configuration example

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.4
 binding-sid mpls 1000
 candidate-paths
 preference 100
 dynamic
 metric type te
 constraints
 affinity
 exclude-any name red
 !
 preference 200
 explicit segment-list SIDLIST1
 !
 segment-list name SIDLIST1
 index 10 mpls label 16002
 index 20 mpls label 30203
 index 30 mpls label 16004

User-defined
name

Color and End-point

Binding-SID

Local Candidate
Paths

On Node1:

2 3

6 5

41

20

Default link metric: 10

SR Policy ID:
(20,1.1.1.4)

➊

➋
➊

➋

segment-routing
 traffic-eng
 affinity-map
 name red bit-position 0

SR Policy – configuration example

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.4
 binding-sid mpls 1000
 candidate-paths
 preference 100
 dynamic
 metric type te
 constraints
 affinity
 exclude-any name red
 !
 preference 200
 explicit segment-list SIDLIST1
 !
 segment-list name SIDLIST1
 index 10 mpls label 16002
 index 20 mpls label 30203
 index 30 mpls label 16004

On Node1:

SID-list1

Path preference 100

Dynamic path

Opt. Obj.: TE metric

Constraint

2 3

6 5

41

20

Default link metric: 10

Path preference 200

Explicit SID-list1

➊

➋
➊

➋

segment-routing
 traffic-eng
 affinity-map
 name red bit-position 0

SR Policy – configuration example

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.4
 binding-sid mpls 1000
 candidate-paths
 preference 100
 dynamic
 metric type te
 constraints
 affinity
 exclude-any name red
 !
 preference 200
 explicit segment-list SIDLIST1
 !
 segment-list name SIDLIST1
 index 10 mpls label 16002
 index 20 mpls label 30203
 index 30 mpls label 16004

2 3

6 5

41

20

Default link metric: 10

On Node1:

FIB @ head-end Node1

Incoming label: 1000

Action: pop and push <16002, 30203, 16004>

Selected Path:
• Valid Path
• Highest Pref value

SR Policy – configuration example

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.4
 binding-sid mpls 1000
 candidate-paths
 preference 100
 dynamic
 metric type te
 constraints
 affinity
 exclude-any name red
 !
 preference 200
 explicit segment-list SIDLIST1
 !
 segment-list name SIDLIST1
 index 10 mpls label 16002
 index 20 mpls label 30203
 index 30 mpls label 16004

On Node1:

Other candidate paths received for

SR Policy (20, 1.1.1.4)

Path received via BGP signaling

 preference 150

 binding-sid mpls 1000

 weight 1, SID-list <16002, 16005>

 weight 2, SID-list <16004, 16008>

Path received via PCEP signaling

 preference 120

 binding-sid mpls 1000

 SID-list <16002, 16005>

Path received via NETCONF signaling

 preference 50

 binding-sid mpls 1000

 SID-list <16002, 16005>

Node1 may receive other
candidate paths for SR Policy

(20, 1.1.1.4) from other
sources, some examples:

Source of path is not
considered for path selection

Selected Path:
• Valid Path
• Highest Pref value

WECMP example

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.4
 binding-sid mpls 1000
 candidate-paths
 preference 200
 explicit segment-list SIDLIST1
 weight 1
 !
 explicit segment-list SIDLIST2
 weight 4
 !
 segment-list name SIDLIST1
 index 10 mpls label 16002
 index 20 mpls label 30203
 index 30 mpls label 16004
 !
 segment-list name SIDLIST2
 index 10 address ipv4 1.1.1.4

Path preference
200

Explicit SID-list1,
Weight 1

Explicit SID-list2,
Weight 4

SID-list1

SID-list2

On Node1:

2 3

6 5

41

20

Default link metric: 10

FIB @ head-end Node1

Incoming label: 1000

Action:pop and push <16002, 30203, 16004> (20%)

 push <16004> (80%)

Explicit Path

SID-list with addresses – example

segment-routing
 traffic-eng
 policy POLICY1
 color 2 end-point ipv4 1.1.1.4
 candidate-paths
 preference 100
 explicit segment-list SIDLIST1

 segment-list name SIDLIST1
 index 10 address ipv4 1.1.1.2
 index 20 address ipv4 99.2.3.3
 index 30 address ipv4 1.1.1.4

2 3

6 5

41

50

Default link metric: 10

→ Prefix-SID 16002

→ Adj-SID 30203

Outgoing interface from first
SID: to Node2

1.1.1.2

SID 16002

1.1.1.4

SID 16004

→ Prefix-SID 16004

99.2.3.3

SID 30203

On Node1:

SID-list:

<16002,

 30203,

 16004>

SID-list with labels – example

segment-routing
 traffic-eng
 policy POLICY1
 color 2 end-point ipv4 1.1.1.4
 candidate-paths
 preference 100
 explicit segment-list SIDLIST1

 segment-list name SIDLIST1
 index 10 mpls label 16002
 index 20 mpls label 30203
 index 30 mpls label 16004

2 3

6 5

41

50

Default link metric: 10

99.2.3.3

SID 30203

Outgoing interface from first
SID: to Node2

1.1.1.2

SID 16002

1.1.1.4

SID 16004

→ Prefix-SID Node2

→ Adj-SID Adj2-3

→ Prefix-SID Node4

On Node1:

SID-list:

<16002,

 30203,

 16004>

Path Validation

• Validation of:

– First SID

– Non-first SID expressed as an IP address

2 3

6 5

41

50

Default link metric: 10

99.2.3.3

SID 30203

1.1.1.2

SID 16002

1.1.1.4

SID 16004

segment-list name SIDLIST1
 index 10 mpls label 16002
 index 20 mpls label 30203
 index 30 mpls label 16004

segment-list name SIDLIST2
 index 10 address ipv4 1.1.1.2
 index 20 address ipv4 99.2.3.3
 index 30 address ipv4 1.1.1.4

Not validated – path remains valid

Validated – path is invalid

SID-list:

<16002,

 30203,

 16004>

animated

Set of SID-lists – example

segment-routing
 traffic-eng
 policy POLICY1
 color 2 end-point ipv4 1.1.1.4
 candidate-paths
 preference 100
 explicit segment-list SIDLIST1
 weight 1
 !
 explicit segment-list SIDLIST2
 weight 4
 !
 !
 !
 !

 segment-list name SIDLIST1
 index 10 address ipv4 1.1.1.2
 index 20 address ipv4 99.2.3.3
 index 30 address ipv4 1.1.1.4
 !
 segment-list name SIDLIST2
 index 10 address ipv4 1.1.1.4
 !
 !
!

2 3

6 5

41

50

Default link metric: 10

1.1.1.2

SID 16002

1.1.1.4

SID 1600499.2.3.3

SID 30203

candidate path

Explicit SID-list1,
Weight 1

Explicit SID-list2,
Weight 4

On Node1:

SID-list (weight 1)

<16002, 30203, 16004>

SID-list (weight 4)

<16004>

Use-case

Dual Plane – Anycast-SID

• The nodes on Plane1 (blue) advertise Anycast-SID 16111 (1.1.1.111/32)

• The nodes on Plane2 (green) advertise Anycast-SID 16222 (1.1.1.222/32)

• The explicit path on Node1 steers packets via SID-list <16111, 16003>
– The path stays on Plane1, except if both uplinks to Plane1 fail or Plane1 becomes partitioned

1 2
11

13 14

21

23 24
SID-list:

< 16111, 16003 >

segment-routing
 traffic-eng
 policy POLICY1
 color 2 end-point ipv4 1.1.1.3
 candidate-paths
 preference 100
 explicit segment-list SIDLIST1
 !
 segment-list name SIDLIST1
 index 10 address ipv4 1.1.1.111
 index 20 address ipv4 1.1.1.3

3

12

22

Subject to testing

N
o

d
e

1

Use-case

TDM migration

• Two disjoint pseudowires from Node1 to Node4

– PW1 steered into SR Policy BLUE
PW2 steered into SR Policy GREEN

• PWs are transported via pinned down paths

– Unprotected: using unprotected Adjacency-SIDs

– PW traffic dropped when path is invalid (invalidation drop)

segment-routing
 traffic-eng
 policy BLUE
 color 10 end-point ipv4 1.1.1.4
 steering invalidation drop
 candidate-paths
 preference 100
 explicit segment-list SIDLIST1
 constraints segments unprotected
 !
 policy GREEN
 color 20 end-point ipv4 1.1.1.4
 steering invalidation drop
 candidate-paths
 preference 100
 explicit segment-list SIDLIST2
 constraints segments unprotected
 !
 segment-list name SIDLIST1
 index 10 address ipv4 99.1.2.2
 index 20 address ipv4 99.2.3.3
 index 30 address ipv4 99.3.4.4
 !
 segment-list name SIDLIST2
 index 10 address ipv4 99.1.6.6
 index 20 address ipv4 99.5.6.5
 index 30 address ipv4 99.4.5.4

2 3

6 5

41

PW1

PW2

SID-list:

< 30106,

30605, 30504 >

SID-list:

< 30102,

30203, 30304 >

N
o

d
e

1

Dynamic Path

Optimization Objectives and Constraints

• TE path computation algorithms solve optimization problems
with constraints

– E.g. “find lowest delay path that avoids link RED”, or “find two lowest
cost paths that are disjoint”

• New efficient SR-native algorithms have been developed
providing solutions that leverage the ECMP-awareness of SR
and minimize the size of the resulting SID-list

• Extensive scientific research is backing these new SRTE
algorithms: SIGCOMM 2015*

* http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p15.pdf

http://conferences.sigcomm.org/sigcomm/2015/pdf/papers/p15.pdf

SR-optimized algorithms
Circuit optimization vs SR optimization

• The introduction of Classic TE (RSVP-TE) made traditional
circuit-based L2 (ATM, Frame-relay) functionality available in
IP networks

– Classic TE is circuit-based, including its path computation algorithms

• Though ECMP is omnipresent in IP networks, Classic TE
circuit-based paths do not natively leverage ECMP

• SR forwarding and SR-optimized computations preserve
ECMP of IP networks and minimize the resulting SID-list size

SR-optimized algorithms
Circuit optimization vs SR optimization

• Using classic TE circuit-based path computation and
translating the path in a SID-list does not provide the desired
solution

– Not ECMP-aware, needs multiple circuits for load-sharing

– Results in a large SID-list to express the path

• A lot of research went into the development of efficient, SR-
optimized path computation algorithms

– Natively ECMP-aware

– Path expressed in a small SID-list

Circuit Optimization vs SR Optimization

2

4

1
5 3

6

7

8 9

Classic TE is circuit-based

CSPF => non-ECMP path

Classic Algo is no good!!

SID-list: <4, 5, 7, 3>

Poor ECMP, big SID-list, ATM optimized

2

4

1
5 3

6

7

8 9

SR-native TE is needed

!No more circuit!

Recognized Innovation - Sigcomm 2015

SID-list: <7, 3>

ECMP, Small SID-list, IP-optimized

SR-optimized algorithms
Circuit optimization vs SR optimization

• In the vast majority of SR use-cases, native SR-optimized
algorithms are preferred

• In some specific use-case (e.g. TDM migration over IP where
the circuit notion prevails), one may prefer a classic circuit
computation followed by an encoding into SIDs

Optimization Objectives

2 3

4

1

Default IGP link metric: I:10

Default TE link metric: T:10

T:15

I:10

6

5

T:15

I:10

T:5

I:30

T:8

I:10

Min-Metric(1 → 3, IGP) = SID-list <16003>

Cumulated IGP metric: 20

Min-Metric Optimization

• Head-end computes a SID-list that expresses the shortest-path according
to the selected metric

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.3
 candidate-paths
 preference 100
 dynamic
 metric
 type [igp|te|latency]

Min-Metric(1 → 3, TE)

= SID-list <16005, 16004, 16003>

Cumulated TE metric: 23

N
o

d
e

1

Min-Metric with Margin and max SID-list

• Head-end computes a SID-list such that
packets flowing through it do not use a
path whose cumulated optimized metric
is larger than the shortest-path for the
optimized metric + margin

• Margin can be expressed as an absolute
value or as a relative value (percentage)
(margin relative <%>)

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.3
 candidate-paths
 preference 100
 dynamic mpls
 metric
 type latency
 margin absolute 5

Why Min-metric with margin?

• In many deployments there are insignificant metric
differences between mostly equal paths (e.g. a difference of
100 usec of delay between two paths from NYC to SFO
would not matter in most cases)

• The Min-Metric with margin relaxes the “absolute” Min-Metric
objective to favor more ECMP or shorter SID-list instead of
insignificant optimization increment

Min-Metric with Margin and max SID-list

2 3

4

1

D:15

I:10

6

5

D:15

I:10

D:5

I:30

D:8

I:10

Default IGP link metric: I:10

Default link-delay metric: D:10

Min-Metric(1 to 3, delay)

= SID-list <16005, 16004, 16003>

Cumulated delay metric = 23

Min-Metric(1 to 3, delay, m=5)

= SID-list <16005, 16003>

Max Cumulated delay metric = 25 < 23 + 5

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.3
 candidate-paths
 preference 100
 dynamic
 metric
 type latency
 margin absolute 5

Min-metric Min-metric with margin

• Optimal link utilization (ECMP)

• Smaller SID-list

N
o
d
e
1

2 3

4

1

Default IGP link metric: I:10

Default link-delay metric: D:10

5

SID-list: <16005, 16004, 16003>

6

Use-case

Low-delay

• Min-metric on link-delay metric

– Same with margin and max-SID

– Same with link-delay metric automatically measured by a node for its attached
links and distributed in the IGP

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.3
 candidate-paths
 preference 100
 dynamic
 metric
 type latency

N
o

d
e

1

D:15

I:10

D:15

I:10

D:10

I:30

D:8

I:10

Use-case

Plane Affinity

• Min-Metric on IGP metric with exclusion of a TE-affinity “Plane2”

– All the links in Plane2 are set with TE-affinity “Plane2”

1 2

11 12

3
13 14

21 22

23 24

Plane1

Plane2

SID-list:

< 16014, 16003 >

segment-routing
 traffic-eng
 affinity-map
 color Plane1 bit-position 0
 color Plane2 bit-position 1
 !
 policy POLICY1
 color 20 end-point ipv4 1.1.1.3
 candidate-paths
 preference 100
 dynamic
 metric type igp
 constraints
 affinity
 exclude-any Plane2

N
o

d
e

1

More details of affinity configuration in

the “Constraints” section

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.7
 candidate-paths
 preference 100
 dynamic
 metric type igp
 constraints
 disjoint-path group-id 1 type node
 !
 policy POLICY2
 color 30 end-point ipv4 1.1.1.7
 candidate-paths
 preference 100
 dynamic
 metric type igp
 constraints
 disjoint-path group-id 1 type node

2 3

5 6

4 71

I:100

Default IGP link metric: I:10

I:100
POLICY1 SID-list:

<16002, 30203, 16007>

POLICY2 SID-list:

<16005, 16006, 16007>

Use-case

Service Disjointness from same head-end

• The head-end computes two
disjoint paths

N
o

d
e

1

More details of disjointness configuration in the

“Constraints” and “Path Disjointness” sections

Constraints

Constraints

• The following constraints can be specified:

– Include and/or exclude TE affinity

– Include and/or exclude IP address

– Include and/or exclude SRLG

– Maximum accumulated metric (IGP, TE, and delay)

– Maximum number of SIDs in the solution SID-list

– Disjoint from another SR Policy in the same association group

Constraint – TE affinity

• Links in the network can be “colored”

– E.g. “country X”, “under maintenance”, ...

• SRTE can compute a path that includes or excludes links that
have specific (combinations of) colors

segment-routing
 traffic-eng
 affinity-map
 !! 32-bit maps
 color blue bit-position 0
 color red bit-position 1
 color green bit-position 2
 !
 interface Gi0/0/0/0
 affinity color blue
 !
 interface Gi0/0/0/1
 affinity color blue
 affinity color green

Constraint – Add affinity colors to links

• “Color” links/interfaces by assigning affinity bit-maps to them

2 3

6 5

41

50

Default link metric: 10

Gi0/0/0/0
1.1.1.4

SID 16004
blue

Gi0/0/0/1

blue + green

Define user-friendly
names for affinity bit-

maps

On Node1:

Assign affinity bit-
map to interface

Assign affinity bit-
map to interface

Constraint – TE affinity

• Specify “affinity” or “relationship” between SR Policy path and
link colors

• An SR Policy path can specify:

– Include-any <color> [<color> ...]: only traverse links that have any of the
specified colors

– Include-all <color> [<color> ...]: only traverse links that have all of the
specified colors

– Exclude-any <color> [<color> ...]: do not traverse links that have any of
the specified colors

Constraint – SR Policy Path affinity

• Specify the relationship (affinity) of the SR Policy path with
the link colors

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.4
 binding-sid mpls 1000
 candidate-paths
 preference 100
 dynamic
 metric type igp
 constraints
 affinity
 exclude-any name red

On Node1:

Don’t use links with
color red

blue + green

2 3

6 5

41

50

Default link metric: 10

Gi0/0/0/0
1.1.1.4

SID 16004
blue

Gi0/0/0/1 red

green

Constraint – IP address

• SRTE can compute paths that avoid specific resources that
are identified by their IP address

– Links

– Nodes

– Sets of nodes
(anycast set)

prefix-set SET1
 1.1.1.6/32
end-set
!
segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.4
 candidate-paths
 preference 100
 dynamic
 metric type igp
 constraints
 address
 exclude SET1

2 3

6 5

41

50

Default link metric: 10

1.1.1.4

SID 16004

1.1.1.6/32

On Node1:

Avoid node with
address 1.1.1.6/32

Constraint – SRLG

• Shared Risk Link Groups (SRLGs) are identified by a number

– Links with the same SRLG id share a common risk (e.g. same fiber
conduit)

srlg
 interface Gi0/0/0/0
 10 value 1111
 20 value 2222
 !
 interface Gi0/0/0/1
 10 value 2222
 20 value 3333
 30 value 4444
 !
!

2 3

6 5

41

50

Default link metric: 10

1.1.1.4

SID 16004

SRLG

1111

2222

SRLG

2222

3333

4444

G
i0

/0
/0

/0

G
i0

/0
/0

/1

On Node6:

Constraint – SRLG

• SRTE can compute paths that excludes links that have
specific SRLGs

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.4
 candidate-paths
 preference 100
 dynamic
 metric type igp
 constraints
 srlg
 exclude 1111

2 3

6 5

41

50

Default link metric: 10

1.1.1.4

SID 16004

On Node1:

Don’t use links with
SRLG 1111

SRLG

1111

2222

SRLG

2222

3333

4444

Constraint – maximum metric

• SRTE can put an absolute limit on the cumulative metric of a
computed path

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.4
 candidate-paths
 preference 100
 dynamic
 metric type igp
 constraints
 bounds
 cumulative
 type igp 80

2 3

6 5

41

50

Default link metric: 10

1.1.1.4

SID 16004

On Node1:

Cumulative metric
must be ≤ 80

• SRTE can put an absolute limit on the number of SIDs in the
SID-list of a computed path

Constraint – limit SIDs

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.4
 candidate-paths
 preference 100
 dynamic
 metric type igp
 constraints
 bounds
 cumulative
 type sid 5

Maximum 5 SIDs in
the solution SID-list

Constraint – disjointness

• SRTE can compute a path that is disjoint from another path in
the same disjoint-group

• See Path Disjointness section

segment-routing
 traffic-eng
 policy POLICY1
 color 10 end-point 1.1.1.3
 candidate-paths
 preference 100
 dynamic
 pcep
 metric type te
 constraints
 disjoint-path group-id 1 type node
 !! disjoint-path group-id <group ID> type (link | node | srlg | srlg-node)

Member of Node-
disjoint group 1

Topological path
 SID-list

Topological path  SID-list

• After the path is computed, the SID-list that expresses the
desired path is derived

• High-level algorithm:

1. Node = head-end

2. Find an IGP prefix-SID that leads as far down the desired path as
possible (without using any link not included in the desired path)

3. If no such prefix-SID exists, use the Adj-SID to the first neighbor along
the path

4. Node = the farthest node that is reached; goto 2.

Topological path  SID-list – Example 1

• Desired topological path = 1234

• SID-list = <16002, 16004>

– 16002 brings the packet from 1 to 2 (shortest
path from Node1 to Node2)

– 16004 brings the packet from 2 to 4 via 3
(shortest path from Node2 to Node4)

1 2

4 3

20

Default link metric: 10

16002

16004

Topological path  SID-list – Example 2

• Desired topological path = 1234

• SID-list = <16003, 30304>

– 16003 brings the packet from 1 to 3 (shortest
path from Node1 to Node3)

– 30304 brings the packet from 3 to 4 using the
Adjacency-SID

1 2

4 3

Default link metric: 10

16003

30304

100

Topological path to SID-list – TE metric

• Note that the derivation of the SID-list to express a
topological path only considers IGP metric, not TE metric

– Default forwarding uses shortest IGP metric forwarding entries

• Example: shortest TE metric path is 1234

– Cumulative TE metric is 30

– The IGP metric topology is the same as
Example 2 on previous slide
→ resulting SID-list = <16003, 30304>

1 2

4 3

16003

30304

I:100

T:10

I:10

T:100

Default IGP link metric: I:10

Default TE link metric: T:10

Traffic Steering

Binding-SID (BSID) is fundamental

• The BSID of the SR Policy selected path is installed in the
forwarding table

• Remote steering

– A packet arriving on the SR Policy head-end with
the BSID as Active Segment (top of label stack) is
steered into the SR Policy associated with the BSID

• Local steering

– A packet that matches a forwarding entry that
resolves on the BSID of an SR Policy is steered
into that SR Policy

BSID SID-list

BSID

Prefix

SID-list

Automated steering

• BGP can automatically steer traffic into an SR Policy based on BGP next-
hop and color of a route

– color of a route is specified by its color extended community attribute

• By default:
If the BGP next-hop and color of a route match the end-point and color of
an SR Policy, then BGP installs the route resolving on the BSID of the SR
Policy

– end-point and color uniquely identify an SR Policy
on a given head-end

1

2 3

5 4

110.1.1.0/24 (color 10, NH 1.1.1.3)

 via SR Policy POL10 (10, 1.1.1.3)

120.1.1.0/24 (color 20, NH 1.1.1.3)

 via SR Policy POL20 (10, 1.1.1.3)

110.1.1.0/24

120.1.1.0/24

POL20

POL10

Color Extended Community attribute

• The Extended Community attribute is specified in RFC 4360

• The color extended community is specified in RFC 5512 and
updated in draft-ietf-idr-sr-policy-safi

– It is a Transitive Opaque Extended community

• CO-bits specify the SR Policy preference (see next slide)

• The color value is a flat 32-bit number

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+
| type 0x03 | sub-type 0x0b |C O| Reserved |
+-+
| Color Value |
+-+

Steering – Color-only (CO) bits

• In very specific cases (e.g. SDN-controlled network), an
operator may want to steer traffic into an SR Policy based on
color only

• This is governed by setting the CO-bits in the color extended
community

• By default, CO-bits are 00 and specify the default Automated
Steering functionality based on color and nexthop

Steering – Color-only (CO) bits

• Assume route R with next-hop N has a single color C

• The Color-Only (CO) bits in the color extended community
attribute flags of R are 00, 01, or 10 (11 is treated as 00)

• BGP steers R according to this preference order:

CO=00 (or CO=11)

Preference:

1. SR Policy(N, C)

2. IGP to N

CO=01

Preference:

1. SR Policy(N, C)

2. SR Policy(null(AFN), C)

3. SR Policy(null(any), C)

4. IGP to N

CO=10

Preference:

1. SR Policy(N, C)

2. SR Policy(null(AFN), C)

3. SR Policy(null(any), C)

4. SR Policy(<any(AFN)>, C)

5. SR Policy(<any(any)>, C)

6. IGP to N

Steering – Color-only (CO) bits – Notes

• Only valid, authorized-to-steer SR Policies are considered for traffic steering

– Invalid and not authorized-to-steer SR Policies are skipped in the selection

• “IGP to N” is the IGP shortest path to N

• SR Policy(null, C) has a “null end-point”

– null(AFN) is the null end-point for the address-family (AF) of N

– null(any) is the null end-point for any address-family

– null(IPv4) is 0.0.0.0; null(IPv6) is ::0

• SR Policy(<any>, C) is “any” SR Policy with color C

– any(AFN) is any end-point of the address-family of N

– any(any) is any end-point of any address-family

• Only one SR Policy(N, C) exists on a given node

• Only one SR Policy(null(AF), C) for each AF exists on a given node

Steering is independent of type of SR Policy

• Steering behavior is absolutely independent of the
type/source of the SR Policy

• The SR Policy may have been preconfigured, learned via
netconf, PCEP or BGP or on-demand triggered by BGP or
another service (LISP)

• Once an SR Policy exists, is valid and authorized to steer,
then BGP simply applies the steering preference rules (color
value and CO-bits)

Route has multiple colors

• If a route R with next-hop N has multiple colors C1 … Ck then BGP steers
R into the SR Policy with the numerically highest color

– Considering only valid and authorized-to-steer SR Policies (Ci,N) with i=1…k

• Example:

– Node1 receives 100.1.1.0/24 with NH 1.1.1.3 and colors 10 and 20

– BGP resolves 100.1.1.0/24 on BSID of POL20
(has numerically highest color 20)

1

2 3

5 4

100.1.1.0/24 (NH 1.1.1.3; color 20, color 10)

 via SR Policy POL20 (20, 1.1.1.3)

100.1.1.0/24

POL10

POL20

Multiple colors for Prim/Secon SR Policies

• Assume route R with next-hop N has colors C1 , C2, … ,Cn with Ci > Ci+1

• SR Policies (N,C1…n) are valid and authorized-to-steer

• BGP resolves R on SR Policy (N,C1) since C1 > C2…n

• If SR Policy (N,C1) is invalidated, then BGP re-resolves R on
SR Policy (N,C2), with C2 the next lower numerical color value

• Example:
– Node1 receives 100.1.1.0/24 with NH 1.1.1.3 and colors 10 and 20

– BGP resolves 100.1.1.0/24
on BSID of POL20 (color 20 > color 10)

– After invalidation of POL20, BGP
re-resolves 100.1.1.0/24 on BSID of POL10

1

2 3

5 4

100.1.1.0/24

(NH 3; color 10, color 20)

 via POL20 (C20, NH3)

100.1.1.0/24

POL10

POL20

via POL10 (C10, NH3)

Disable automated traffic steering

• By default, traffic can be steered on each SR Policy;
i.e. each SR Policy is “authorized-to-steer”

• The steering of traffic into a given SR Policy can be disabled
by configuration

• Configuration example:
disable steering for BGP

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.4
 steering bgp disable
 candidate-paths
 preference 100
 dynamic
 metric
 type te

Setting color of route

• The color of a BGP route is typically set at the egress PE by
adding a color extended community to the route

– The color extended community is propagated to the ingress PE

– Traffic steering on the ingress PE is then done automatically based on
the color, no route-policy required

• The traffic steering can be influenced on the ingress PE by
setting a color extended community for a route using an
ingress route-policy

Color assignment on egress PE

• Node1 has two SR Policies with end-point Node3:

– POL10 with color 10 (blue) via Node2

– POL20 with color 20 (green) via Node4

• Node3 advertises two prefixes with
next-hop 1.1.1.3 in BGP:

– 110.1.1.0/24 with color 10 (blue)

– 120.1.1.0/24 with color 20 (green)

1

2 3

5 4

110.1.1.0/24, NH 1.1.1.3

 color 10

120.1.1.0/24, NH 1.1.1.3

 color 20

110.1.1.0/24

120.1.1.0/24

BGP

Color assignment
Egress PE

1

2 3

5 4

110.1.1.0/24, NH 1.1.1.3

 color 10

120.1.1.0/24, NH 1.1.1.3

 color 20

110.1.1.0/24

120.1.1.0/24

extcommunity-set opaque BLUE
 10
end-set
!
extcommunity-set opaque GREEN
 20
end-set
!
route-policy SET_COLOR
 if destination in (110.1.1.0/24) then
 set extcommunity color BLUE
 endif
 if destination in (120.1.1.0/24) then
 set extcommunity color GREEN
 endif
end-policy
!
router bgp 1
 neighbor 1.1.1.1
 remote-as 1
 update-source Loopback0
 address-family ipv4 unicast
 route-policy SET_COLOR out

N
o

d
e

3

BGP

RPL attach points to set color ext community
Attach Point Set

VRF export ✓

VRF import 

EVI export ✓

EVI import ✓

Neighbor-in ✓

Neighbor-out ✓

Inter-AFI export 

Inter-AFI import 

Default-originate ✓

Ingress PE

1

2 3

5 4

110.1.1.0/24, NH 1.1.1.3

 color 10

120.1.1.0/24, NH 1.1.1.3

 color 20

110.1.1.0/24

120.1.1.0/24

segment-routing
 traffic-eng
 policy POL10
 color 10 end-point ipv4 1.1.1.3
 candidate-paths
 preference 100
 explicit segment-list SIDLIST1
 !
 policy POL20
 color 20 end-point ipv4 1.1.1.3
 candidate-paths
 preference 100
 explicit segment-list SIDLIST2
 !
 segment-list name SIDLIST1
 index 10 address ipv4 1.1.1.3
 !
 segment-list name SIDLIST2
 index 10 address ipv4 1.1.1.4
 index 20 address ipv4 1.1.1.3

N
o

d
e

1
router bgp 1
 neighbor 1.1.1.3
 remote-as 1
 update-source Loopback0
 address-family ipv4 unicast

N
o

d
e

1

No route-policy required on Node1!

POL10

POL20

BGP

110.1.1.0/24 via POL10

120.1.1.0/24 via POL20

Color assignment on ingress PE

• Node1 has two SR Policies with end-point Node3:

– POL10 with color 10 (blue) via Node2

– POL20 with color 20 (green) via Node4

• Node3 advertises two prefixes with
next-hop 1.1.1.3 in BGP:

– 190.1.1.0/24 with color 90 (purple)

– 100.1.1.0/24 without color

• Node1 sets:

– color of 190.1.1.0/24 to 10 (blue)

– color of 100.1.1.0/24 to 20 (green)

1

2 3

5 4

190.1.1.0/24, NH 1.1.1.3

 color 90

100.1.1.0/24, NH 1.1.1.3

 <no color>

190.1.1.0/24

100.1.1.0/24POL10

POL20

BGP

190.1.1.0/24 via POL10

100.1.1.0/24 via POL20

190.1.1.0/24 → color 10

100.1.1.0/24 → color 20

Ingress PE

segment-routing
 traffic-eng
 policy POL10
 color 10 end-point ipv4 1.1.1.3
 candidate-paths
 preference 200
 explicit segment-list SIDLIST1
 !
 policy POL20
 color 20 end-point ipv4 1.1.1.3
 candidate-paths
 preference 200
 explicit segment-list SIDLIST2
 !
 segment-list name SIDLIST1
 index 10 address ipv4 1.1.1.3
 !
 segment-list name SIDLIST2
 index 10 address ipv4 1.1.1.4
 index 20 address ipv4 1.1.1.3

N
o
d
e
1

extcommunity-set opaque BLUE
 10
end-set
!
extcommunity-set opaque GREEN
 20
end-set
!
route-policy SET_COLOR
 if destination in (190.1.1.0/24) then
 set extcommunity color BLUE
 endif
 if destination in (100.1.1.0/24) then
 set extcommunity color GREEN
 endif
end-policy
!
router bgp 1
 neighbor 1.1.1.3
 remote-as 1
 update-source Loopback0
 address-family ipv4 unicast
 route-policy SET_COLOR in

N
o

d
e

1

1

2 3

5 4

190.1.1.0/24, NH 1.1.1.3
color 90

100.1.1.0/24, NH 1.1.1.3

<no color>

POL10

POL20

BGP

Pseudowire Preferred path

• The SR Policy used to transport Pseudowire traffic can be
specified using the preferred-path configuration

• If using an LDP signaled
PW, then the neighbor
address must be
reachable (via the SR
Policy or another path)

l2vpn
 pw-class EoMPLS-PWCLASS
 encapsulation mpls
 preferred-path sr-te policy POL1
 !
 xconnect group XCONGRP
 p2p XCON-P2P
 interface TenGigE0/1/0/3
 neighbor ipv4 1.1.1.3 pw-id 1234
 !! below line only if not using LDP
 mpls static label local 2222 remote 3333
 pw-class EoMPLS-PWCLASS

On-Demand Nexthop (ODN)

On-Demand Nexthop

• A service head-end automatically instantiates an SR Policy to
a BGP next-hop when required (on-demand)

• Color community is used as SLA indicator

• Reminder: an SR Policy is defined (color, end-point)

• Automated Steering (AS) automatically steers the BGP traffic
into this SR Policy, also based on nexthop and color

BGP Color

Community
BGP

Next-hop

On-demand SR Policy

• Configure an SR Policy template for each color for which on-
demand SR Policy instantiation is desired

• An example with two color templates configured:

– color 10 for high bandwidth (optimize IGP metric)

– color 20 for low-delay (optimize link-delay metric)

segment-routing
 traffic-eng
 on-demand color 10
 dynamic
 metric type igp
 !
 on-demand color 20
 dynamic
 metric type latency

SR Policy template
High-BW (color 10)

SR Policy template
low-delay (color 20)

On-demand SR Policy

• If an SR Policy template exists for color C, then a route with
color C can trigger an on-demand SR Policy candidate path
instantiation to its next-hop N, for any N

• The end-points for which an on-demand SR Policy candidate
path will be instantiated can be restricted per color

• Example configuration: only
instantiate color 10 SR Policies
for end-points 1.1.1.10 and
1.1.1.11

ipv4 access-list ACL1
 10 permit ipv4 host 1.1.1.10 any
 20 permit ipv4 host 1.1.1.11 any
!
segment-routing
 traffic-eng
 on-demand color 10
 restrict ACL1
 dynamic
 metric type latency

Automated Steering

• Service traffic is automatically steered on the right SLA path

– Steered into an SR Policy based on color and next-hop of the service
route

– Independent from ODN: SR Policy can already exist or be instantiated
on-demand (ODN) when receiving the service route update

• Color community of the service route is used as SLA indicator

• Simple and Performant

Different VPNs need different underlay SLA

2

6

1 CE

5

4
I: 50

Default IGP cost: I:10

Default link-delay: D:10

IGP cost 30

D: 15

2

6

1 CE

5

4

delay 20

Basic VPN should

use lowest cost

underlay path

Premium VPN

should use lowest

delay path

Objective:

operationalize

this service for

simplicity, scale

and

performance
I: 50

D: 15

Default IGP cost: I:10

Default link-delay: D:10

2

6

1 CE

5

4
I: 50

D: 15

On-demand SR Policy work-flow

➊ BGP: 20/8 via

CE

20/8

RR
➋ BGP: 20/8 via PE4

VPN-LABEL: 99999

Low-delay (color 20)

➌ BGP: 20/8 via PE4

VPN-LABEL: 99999

Low-delay (color 20)

router bgp 1
 neighbor 1.1.1.10
 address-family vpnv4 unicast
!
segment-routing
 traffic-eng
 on-demand color 20
 dynamic
 metric
 type latency

➍ PE4 with Low-

delay (color 20)?

➎ use template

color 20

➏ → SID-list

<16002, 30204>

➎

animated

Default IGP cost: I:10

Default link-delay: D:10

no route-policy required!

SR Policy template
Low-delay (color 20)

2

6

1 CE

5

4
I: 50

D: 15

Performant Automated Steering

➊ BGP: 20/8 via

CE

20/8

RR
➋ BGP: 20/8 via PE4

VPN-LABEL: 99999

Low-delay (color 20)

➌ BGP: 20/8 via PE4

VPN-LABEL: 99999

Low-delay (color 20)

➍ PE4 with Low-

delay (color 20)?

➎ use template

color 20

➏ → SID-list

<16002, 30204>

FIB table at PE1

SRTE: 4001: Push <16002, 30204>

➐ instantiate

SR Policy

BSID 4001

Low delay to PE4

➐

➑ forward 20/8

via BSID 4001

Automatically, the service route

resolves on the Binding-SID (4001) of

the SR Policy it requires

Simplicity and Performance

No complex PBR to configure, no

PBR performance tax

➑

animated

➐

BGP: 20/8 via 4001

Default IGP cost: I:10

Default link-delay: D:10

Benefits

• SLA-aware BGP service

• No a-priori full-mesh of SR Policy configuration

– 3 to 4 common optimization templates are used throughout the network

> color → optimization objective

• No complex steering configuration

– Automated Steering of BGP routes on the right SLA path

– Data plane performant

– BGP PIC FRR data plane protection is preserved

– BGP NHT fast control plane convergence is preserved

PIC FRR = Prefix Independent Convergence Fast ReRoute

NHT = Next-Hop Tracking

Multi-domain
On-Demand Nexthop
(ODN)

On-Demand Nexthop – multi-domain

• The On-Demand Nexthop and Automated Steering (AS)
functionalities also apply to multi-domain networks

On-Demand Nexthop – multi-domain

• On-demand Nexthop automatically provides inter-domain
best-effort reachability and inter-domain reachability with SLA

• Head-end uses SR PCE to automatically provide an SR
Policy path to the remote domain destination when needed
(On-demand)

• Scaling benefit

– On-Demand Nexthop: on-demand pull model

– Classic inter-domain reachability uses a push model

– Think of a large-scale aggregation with 100k access nodes where each
such node only needs to talk to 10’s of other nodes

On-Demand Nexthop – workflow

• Service head-end receives an overlay route to a remote
service end-point

– The overlay route can indicate a certain required SLA

• The On-demand Nexthop function automatically sends a
stateful PCEP Path Computation request to SR PCE

– PCEP Request includes the Optimization Objective and Constraints to
satisfy the required SLA

• SR PCE computes the inter-domain path to the remote end-
point with SLA

On-Demand Nexthop

1 2

6 7

5

I:100

I:100
3

8

4

I:100

I:100

Default IGP link metric: I:10

Default link-delay metric: D:10

1 2

6 7

5

I:100

I:100
3

8

4

I:100

I:100

Default IGP link metric: I:10

Default link-delay metric: D:10

CE

CE

Basic VPN should

use best-effort

(lowest cost) inter-

domain underlay

path

Premium VPN

should use lowest

delay inter-domain

underlay path

IGP cost 40

delay 20

Objective:

operationalize

this service for

simplicity, scale

and

performance

1 2

6 7

5

I:100

I:100
3

8

4

I:100

I:100

Default IGP link metric: I:10

Default link-delay metric: D:10

CE

On-Demand Nexthop reachability

RR

➋ BGP: 20/8 via PE3

VPN-LABEL: 99999

Best-effort (color 10)

➌ BGP: 20/8 via PE3

VPN-LABEL: 99999

Best-effort (color 10)

➍ PE4 with Best-

effort (color 10)?

➎ use template

color 10

router bgp 1
 neighbor 1.1.1.10
 address-family vpnv4 unicast
!
segment-routing
 traffic-eng
 on-demand color 10
 dynamic
 pcep
 metric
 type igp
 !
 on-demand color 20
 dynamic
 pcep
 metric
 type latency

➎

➊ BGP:

20/8 via CE

20/8

➏ to PE4

with lowest

IGP metric?

animated

➐ → SID-list

<16002, 16003>

SR
PCE

SR Policy template
Best-effort (color 10)

➎ use template

color 10

1 2

6 7

5

I:100

I:100
3

8

4

I:100

I:100

Default IGP link metric: I:10

Default link-delay metric: D:10

CE

On-Demand Nexthop reachability

RR

➋ BGP: 20/8 via PE3

VPN-LABEL: 99999

Best-effort (color 10)

➌ BGP: 20/8 via PE3

VPN-LABEL: 99999

Best-effort (color 10)

➍ PE4 with Best-

effort (color 10)?

animated

➊ BGP:

20/8 via CE

20/8

➏ to PE4

with lowest

IGP metric? ➐ → SID-list

<16002, 16003>

Automatically, the service route

resolves on the Binding SID (4002) of

the SR Policy it requires

Simplicity and Performance

No complex PBR to configure, no

PBR performance tax

SR
PCE

➒ forward 20/8

via BSID 4002

➒

BGP: 20/8 via 4002

➑ instantiate

SR Policy

BSID 4002

FIB table at PE1

SRTE: 4002: Push <16002, 16003>

➑

Best-effort

to PE3

➑

1 2

6 7

5

I:100

I:100
3

8

4

I:100

I:100

Default IGP link metric: I:10

Default link-delay metric: D:10

CE

On-Demand Nexthop with SLA

RR

➋ BGP: 20/8 via PE3

VPN-LABEL: 99999

Low-delay (color 20)

➌ BGP: 20/8 via PE3

VPN-LABEL: 99999

Low-delay (color 20)

➍ PE4 with Low-

delay (color 20)?

➎ use template

color 20

router bgp 1
 neighbor 1.1.1.10
 address-family vpnv4 unicast
!
segment-routing
 traffic-eng
 on-demand color 10
 dynamic
 pcep
 metric
 type igp
 !
 on-demand color 20
 dynamic
 pcep
 metric
 type latency

➎

➊ BGP:

20/8 via CE

20/8

➏ to PE4

with lowest

delay?

animated

➐ → SID-list

<30102, 30203>

SR
PCE

SR Policy template
Low-delay (color 20)

➎ use template

color 20

1 2

6 7

5

I:100

I:100
3

8

4

I:100

I:100

Default IGP link metric: I:10

Default link-delay metric: D:10

CE

On-Demand Nexthop with SLA

RR

➋ BGP: 20/8 via PE3

VPN-LABEL: 99999

Low-delay (color 20)

➌ BGP: 20/8 via PE3

VPN-LABEL: 99999

Low-delay (color 20)

➍ PE4 with Low-

delay (color 20)?

animated

➊ BGP:

20/8 via CE

20/8

➏ to PE4

with lowest

delay? ➐ → SID-list

<30102, 30203>

Automatically, the service route

resolves on the Binding SID (4001) of

the SR Policy it requires

Simplicity and Performance

No complex PBR to configure, no

PBR performance tax

➑ instantiate

SR Policy

BSID 4001

FIB table at PE1

SRTE: 4001: Push <30102, 30203>

➑

Low delay

to PE3

➑

SR
PCE

➒ forward 20/8

via BSID 4001

➒

BGP: 20/8 via 4001

Benefits

• Scalable – PE1 only gets the inter-domain paths that it needs

• Simple – no BGP3107 pushing all routes everywhere

• No complex steering configuration

– Automated steering of BGP routes on the right SLA path

– Data plane performant

* BGP3107 = BGP Labeled Unicast (BGP-LU) according to RFC3107, now obsoleted by RFC8277,

 often used in “seamless MPLS” deployments (draft-ietf-mpls-seamless-mpls)

Dynamic Path
Distributed or Centralized?

Distributed and Centralized

• There are two possibilities to compute the dynamic path for
an SR Policy:

– Head-end computes the path itself (“distributed”)

– Head-end requests SR PCE to compute the path (“centralized”*)

• By default, dynamic paths are computed by the head-end

• Head-end uses SR PCE when local computation is not possible

– SR PCE is required if more information is needed than is available on a
head-end; e.g. multi-area/domain paths, or disjoint paths from different
head-ends

* “centralized” indicates SR PCE’s capability (having more information), not its position in the

network. SR PCE is natively distributed as indicated in the SR PCE section

Head-end and SR PCE: same algorithms

• Head-end and SR PCE use the same SR-optimized
computation algorithms

Path Computation
Distributed or Centralized?

• SRTE supports each model where it makes sense
Policy Single-Domain Multi-Domain

Reachability IGPs Centralized

Low delay Distributed or Centralized Centralized

Disjoint from same node Distributed or Centralized Centralized

Disjoint from different node Centralized Centralized

Avoiding resources Distributed or Centralized Centralized

Capacity optimization Distributed (limited)

Centralized

Maintenance Centralized

Multi-Topology (IP+Optical) Centralized

SR PCE

WAE, REX, ODL,

Custom app

SR PCE

SR Path Computation Element (SR PCE)

• SR PCE is an IOS XR multi-domain stateful SR-optimized PCE

– IOS XR: SR PCE functionality is available on any physical or virtual IOS
XR node, activated with a single configuration command

– Multi-domain: Real-time reactive feed via BGP-LS/ISIS/OSPF from
multiple domains; computes inter-area/domain/AS paths

– Stateful: takes control of SRTE Policies, updates them when required

– SR-optimized: native SR-optimized computation algorithms

• SR PCE is fundamentally distributed

– Not a single all-overseeing entity (“god box”), but distributed across the
network; RR-alike deployment

SR PCE – IOS XR PCE

• SR PCE functionality is available in IOS XR base image

– Physical and virtual IOS XR devices

• Enable it by configuring its PCEP* session IP address

pce
 address ipv4 1.1.1.3
!

On SR PCE:

* Path Computation Element Protocol

SR PCE – Real-time Topology Feed

• SR PCE learns real-time topologies via BGP-LS and/or IGP

• BGP-LS is intended to carry link-state topology information

– Hence the name “LS” that stands for “Link State”

• BGP-LS has been extended multiple times in order to
incorporate other types of topology information:

– SR Extensions

– Traffic Engineering Metric Extensions

– Egress Peer Engineering

– SR TE Policies

Same multi-domain SRTE DB

• SR PCE uses the same multi-domain SRTE DB as the head-end

– SR PCE can learn an attached domain topology via its IGP or a BGP-LS
session

– SR PCE can learn a non-attached domain topology via a BGP-LS session

> Direct session or via BGP Route-reflector (RR)

router isis SR !! or ospf
 distribute link-state instance-id 32

router bgp 1
 address-family link-state link-state
 !
 neighbor 1.1.1.1
 remote-as 1
 update-source Loopback0
 address-family link-state link-state

On SR PCE:

On SR PCE:

Domain1
SR

PCE

RR
Domain1

SR

PCE

Domain2 Domain3

1 2

Same multi-domain SRTE DB

• A node that feeds the IGP link-state database in BGP-LS has
the following configuration:

• The illustrations use iBGP BGP-LS sessions, but eBGP is
supported as well

router isis SR !! or ospf
 distribute link-state instance-id 32
!
router bgp 1
 address-family link-state link-state
 !
 neighbor 1.1.1.10 !! SR PCE or RR
 remote-as 1
 update-source Loopback0
 address-family link-state link-state

On Node1 or Node2:

RR
Domain1

SR

PCE

Domain2 Domain3

1 2

SR PCE – Multi-domain real-time topology feed

• SR PCE receives real-time reactive feeds via BGP-LS from multiple
domains

– One or more nodes in each domain feed the topology information via BGP-LS,
including IP addresses and SIDs

– AS peering nodes advertise their peering links information in BGP-LS (Egress
Peer Engineering)

– BGP RRs can be used to scale the BGP-LS feed to the SR PCE nodes (regular
BGP functionality)

• SR PCE combines the different information feeds to form a
real-time consolidated view of the entire topology

• SR PCE uses this complete topology for path computation

BGP-LS feed to SR PCE

• Typically, BGP RRs are used to scale BGP-LS feeds

• Any node can have a BGP-LS session to the RR

– Any node can feed its
local IGP topology via BGP-LS

– Peering nodes can feed their
EPE information via BGP-LS

BGP-LS

1 3

6 5 4

RR

PCE
1

PCE
2

Domain1

7

89

RR

PCE
4

PCE
3

Domain2

In this illustration, Node6 and Node3 distribute

Domain1’s topology in BGP-LS, Node4 and Node9

distribute Domain2’s topology in BGP-LS

SR PCE receives topology of all domains

• Each domain feeds its
topology to SR PCE via BGP-LS

– Typically via RRs

Domain1 Domain2

A BR1 BR3

BR2 BR4

Domain3

Z

BR5

BR6

BGP-LS

P
e

e
ri
n

g

lin
k
s

Domain1

A BR1

BR2

Domain2

BR1 BR3

BR2 BR4

BR3 BR5

BR4 BR6

Domain3

Z

BR5

BR6

SR

PCE

SR PCE consolidates the topologies

• SR PCE combines the different
topologies to compute
paths across entire topology

Domain1 Domain2

A BR1 BR3

BR2 BR4

Domain3

Z

BR5

BR6

BGP-LS

P
e

e
ri
n

g

lin
k
s

Domain1 Domain2

A BR1 BR3

BR2 BR4

Domain3

Z

BR5

BR6

SR

PCE

SR PCE and Multi-domain – Notes

• When advertising multiple topologies/domains in BGP-LS,
each topology/domain must have a unique instance-id

– Instance-id identifies a “routing universe”

– Default: 0 – Value range ISIS: <2-65535>; OSPF: <0-4294967295>

– Values 1-31 should not be used

> RFC7752: Values in the range 32 to 264-1 are for "Private Use"

router isis Domain1
 distribute link-state instance-id 32

For example, on the BGP-LS node in Domain1:

router isis Domain2
 distribute link-state instance-id 33

For example, on the BGP-LS node in Domain2: Unique instance-id

SR PCE and Multi-domain – Notes

• SR PCE identifies border nodes by a common TE router-id advertised in
multiple domains

• Border nodes should advertise the same TE router-id and TE router-id
prefix reachability in all its attached domains (i.e. all its IGP instances)

router isis Domain1
 net 49.0001.1111.0000.0001.00
 address-family ipv4 unicast
 router-id Loopback0
 !
 interface Loopback0
 passive
 address-family ipv4 unicast
 prefix-sid absolute 16001
!

router isis Domain2
 net 49.0001.2222.0000.0001.00
 address-family ipv4 unicast
 router-id Loopback0
 !
 interface Loopback0
 passive
 address-family ipv4 unicast
 prefix-sid absolute 16001

Border node BR1:

Common TE router-idCommon TE router-id

Domain1 Domain2

A BR1 BR3

BR2 BR4

Domain3

Z

BR5

BR6

SR PCE and Multi-domain – Notes

• SR PCE uses BGP router-id and TE router-id to identify inter-AS border
nodes and peering sessions

• Peering nodes should use the same router-id for TE and BGP

interface Loopback0
 ipv4 address 1.1.1.3/32
!
router isis Domain2
 net 49.0001.3333.0000.0003.00
 address-family ipv4 unicast
 router-id Loopback0
 !
 interface Loopback0
 passive
 address-family ipv4 unicast
 prefix-sid absolute 16003
!

router bgp 2
 bgp router-id 1.1.1.3
 address-family ipv4 unicast
 !
 neighbor 99.3.5.5
 remote-as 3
 address-family ipv4 unicast
 route-policy bgp_in in
 route-policy bgp_out out

Border node BR3:

Domain1 Domain2

A BR1 BR3

BR2 BR4

Domain3

Z

BR5

BR6

RID = router-id

IGP TE RID == BGP RID

Same computation algorithms

• SR PCE uses the same SR-optimized computation
algorithms as the head-end

SR PCE computes dynamic path

• A head-end requests SR PCE to compute a dynamic path

• Request/Reply/Report or Report/Update/Report workflow is used

– IOS XR headend uses the Report/Update/Report workflow

• SR PCE is stateful, it maintains the path, updating the path
when required (e.g. after topology change)

SR PCE computes dynamic path

• Request/Reply/Report workflow:

– head-end requests SR PCE to compute a path

> Head-end provides optimization objective and constraints to SR PCE

– SR PCE computes path, derives SID-list and replies to head-end

– Head-end programs SID-list and reports it to SR PCE

> Head-end delegates the path to SR PCE

SR PCE computes dynamic path

• Report/Update/Report workflow:

– head-end reports empty path to SR PCE

> Head-end delegates the path to SR PCE

> Head-end provides optimization objective and constraints to SR PCE

– SR PCE computes path, derives SID-list and updates path on head-end

– Head-end programs SID-list and reports it to SR PCE

> Head-end delegates the path to SR PCE

• IOS XR headend uses this Report/Update/Report workflow

Domain1 Domain2

PCEP

SR

PCE

Request/Reply/Report workflow

• ➊ Node1 is configured to instantiate a
low-delay SR Policy to Node3, e.g. by
Network Service Orchestrator (NSO), or a
human operator

• Since the end-point Node3 is in a remote
domain, Node1 cannot compute the
dynamic path locally and must use SR
PCE

2

6 7

5 7

I:100

I:100
3

8

4

I:100

I:100

➊ low-delay to 3 ?

Default IGP link metric: I:10

Default link-delay metric: D:10

A single centralized

SR PCE node to

simplify illustration

1

Domain1 Domain2

PCEP

Request/Reply/Report workflow (Cont.)

• ➋ Node1 sends a PCEP Path
Computation Request (PCReq) to SR
PCE, requesting path “to Node3” with
“Optimize TE metric”

• ➌ SR PCE stores the request and
computes a TE metric shortest-path from
Node1 to Node3, say the resulting SID list
is <30102, 30203>

• ➍ PCE sends “SID list <30102, 30203>”
to Node1 in PCEP Path Computation
Reply (PCRepl)

1 2

6 7

5 7

I:100

I:100
3

8

4

I:100

I:100➊

➋ PCReq “to 3”,

“TE metric”

➍ PCRepl

“SID-list <30102, 30203>”

➌ → SID-list

<30102, 30203>
SR

PCE

Default IGP link metric: I:10

Default link-delay metric: D:10

Request/Reply/Report workflow (Cont.)

• ➎ Node1 allocates a BSID 4001 and
activates the SR Policy path to Node3 via
<30102, 30203>

• and ➏ sends Path Computation Report
(PCRpt) to SR PCE, delegating the SR
Policy to SR PCE and including BSID

Domain1 Domain2

1 2

6 7

5 7

I:100

I:100
3

8

4

I:100

I:100

➋

➍

➌

➎ SID-list:

<30102, 30203>
FIB table at Node1

SRTE: 4001: Push <30102, 30203>

➏ PCRept

“BSID 4001”, “delegate”

PCEP

SR

PCE

➊

Default IGP link metric: I:10

Default link-delay metric: D:10

BSID

Decouple overlay/underlay

• The Request/Reply model separates the service creation and
maintenance (overlay) from the topology and path
maintenance (underlay)

– NSO (“Overlay Controller”) does not need to be aware of the topology

– SR PCE (“Underlay Controller”) is not aware of the service, SR Policy
and traffic steering configuration

– NSO does not need to interact directly with SR PCE;
Overlay Controller is decoupled from Underlay Controller

SR PCE – Stateful

• SR PCE stores path computation requests (stateful)

– Request includes optimization objective and constraints

• SR PCE has control over the paths delegated to it

• SR PCE updates the paths when required, e.g. following a
multi-domain topology change that impacts connectivity

– Anycast-SIDs and Local FRR (TI-LFA) minimize traffic loss during the
stateful re-optimization

Stateful – SR PCE updates path

• ➊ A topology change occurs in Domain2

• TI-LFA protects traffic within 50ms

• ➋ BGP-LS pushes the topology change to
SR PCE

• ➌ SR PCE re-computes path; the new
SID-list is <30102, 16003>

• ➍ SR PCE sends PCUpd message with
“SID list <30102, 16003>” to Node1

Domain1 Domain2

1 2

6 7

5 7

I:100

I:100
3

8

4

I:100

I:100

PCEPDefault IGP link metric: I:10

Default link-delay metric: D:10 BGP-LS

1

➌ → SID-list

<30102, 16003>

➍ PCUpd

“SID-list <30102, 16003>”

SR

PCE
➋ BGP-LS update

Stateful – SR PCE updates path

• ➎ Node1 updates SR Policy Path via
<30102, 16003>, maintaining the BSID
4001

• and ➏ sends Path Computation Report
(PCRpt) to SR PCE, delegating the SR
Policy to SR PCE and including BSID

Domain1 Domain2

1 2

6 7

5 7

I:100

I:100
3

8

4

I:100

I:100
➎ SID-list:

<30102, 16003>

➏ PCRept

“BSID 4001”, “delegate”

PCEP

SR

PCE

Default IGP link metric: I:10

Default link-delay metric: D:10 BGP-LS

➋

➌

➍

FIB table at Node1

SRTE: 4001: Push <30102, 30203>

1

SRTE: 4001: Push <30102, 16003>

BSID

SR PCE – High Availability (HA)

• SR PCE leverages the well-known standardized PCE HA

• Head-end sends PCEP Report for its SR Policies to all
connected SR PCE nodes

• Head-end delegates control to its primary SR PCE

– Delegate flag (D) is set in PCRept to primary SR PCE

• Upon failure of the primary SR PCE, head-end re-delegates
control to another SR PCE

SR PCE HA – workflow

• ➊ Node1 requests SR PCE1 to compute
path to Node3, ➋ SR PCE1 computes
path and replies with SID list <30102,
30203> and ➌ Node1 activates SR Policy

• ➍ Node1 reports SR Policy to both SR
PCE1 and SR PCE2 and delegates
control of the SR Policy to SR PCE1
(“delegate” (D:1))

Domain1 Domain2

1 2

6 7

5 7

I:100

I:100
3

8

4

I:100

I:100

➊

➋

➌

➍ PCRept

“delegate” (D:1)

PCEP

PCE
1

Default IGP link metric: I:10

Default link-delay metric: D:10

PCE
2

➍ PCRept

 (D:0)

PCE
1

SR PCE HA – workflow

• ➎ SR PCE1 (primary) fails

• ➏ Node1 detects SR PCE1 PCEP failure
(keepalive) and starts re-delegation timer

• ➐ when the timer expires, Node1
delegates the SR Policy control to SR
PCE2

• SR PCE2 re-computes path and updates
path if required

Domain1 Domain2

1 2

6 7

5 7

I:100

I:100
3

8

4

I:100

I:100

PCEPDefault IGP link metric: I:10

Default link-delay metric: D:10

➏

PCE
2

5

➐ PCRept

“delegate” (D:1)

SR PCE – Fundamentally Distributed

• SR PCE not to be considered as a single all-overseeing
device

• SR PCE deployment is closer to BGP RR deployment model

• Different service end-points can use different pairs of SR
PCE s

• Choice of SR PCE can either be based on proximity or
service

SR PCE – Fundamentally Distributed

• Add SR PCE nodes where needed; per geographic region,
per service, ...

– SR PCE needs to get the required topology information for its task

> E.g. to compute inter-domain paths SR PCE needs the topology of all
domains

• Example: Domain1 Domain2

A BR1 BR3

BR2 BR4

Domain3

ZBR5

BR6

B

PCEP

SR

PCE

SR

PCE

SR

PCE

SR

PCE

SR

PCE

SR

PCE

SR PCE – Fundamentally Distributed

• Using RRs to scale the BGP-LS topology distribution

• Any node can have a BGP-LS session to the RR

Domain1 Domain2 Domain3

BGP-LS

RR

SR
PCE

SR
PCE

RR

SR
PCE

SR
PCE

RR

SR
PCE

SR
PCE

1
2

3

4 5

6

Domain1

SID-list:

{30102, 30203}

SID-list:

{16007, 16008}

Domain2

Use-case

Service Disjointness

• Two dynamic paths between two different pairs of (head-
end, end-point) must be disjoint from each other

1 2

6 7

5 7

I:100

Default IGP link metric: I:10

I:100
3

8

4

I:100

I:100

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.3
 candidate-paths
 preference 100
 dynamic
 pcep
 metric type igp
 constraints
 association group 1 type node

segment-routing
 traffic-eng
 policy POLICY2
 color 20 end-point ipv4 1.1.1.8
 candidate-paths
 preference 100
 dynamic
 pcep
 metric type igp
 constraints
 association group 1 type node

N
o

d
e

1
N

o
d

e
6

SR
PCE

SR
PCE

Use-case

Inter-Domain Path – Best Effort

• There is no a-priori route distribution between domains

Domain1

SID-list:

{16002, 16003}

Domain2

1 2

6 7

5 7

I:100

Default IGP link metric: I:10

I:100
3

8

4

I:100

I:100

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.3
 candidate-paths
 preference 100
 dynamic
 pcep
 metric
 type igp

N
o

d
e

1

SR
PCE

SR
PCE

Use-case

Inter-Domain Path – Low-Delay

• No a-priori route distribution required between domains

• An end-to-end policy is requested

Domain1

SID-list:

{30102, 30203}

Domain2

1 2

6 7

5 7

I:100

Default IGP link metric: I:10

Default link-delay metric: D:10

I:100
3

8

4

I:100

I:100

SR
PCE

SR
PCE segment-routing

 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.3
 candidate-paths
 preference 100
 dynamic
 pcep
 metric
 type latency

N
o

d
e

1

BGP-SRTE
Signaling SR Policy path
via BGP

Signaling SR Policy

candidate path via BGP

DC (BGP-SR)

10

11

12

13

14

2 4

6 5

7

WAN (IGP-SR)

3

1

PEER

IPv4 – SR Policy

NLRI

Color green

End-point 4.4.4.4

Distinguisher 1234

Tunnel encaps attr

Preference 200

Binding SID 4001

Segment List

 Weight: 1

 <16001, 16002, 30204>

Segment List

 Weight: 1

 <16003, 16004>

FIB on Node12:

Ctrl

In Out Fraction

4001
<16001, 16002, 30204> 50%

50%<16003, 16004>

B
G

P

Signaling SR Policy candidate path via BGP

• BGP signals a candidate path of an SR Policy

– SR Policy is identified by the NLRI

– If the SR Policy does not yet exist when the candidate path is signaled,
then the SR Policy will be automatically instantiated

SAFI and NLRI

• A new SAFI is defined: SR Policy SAFI

– suggested code-point value 73, to be assigned by IANA

• The NLRI identifies the SR Policy

– Distinguisher: BGP-specific mechanism to allow to distribute multiple paths for the same
SR Policy and avoid BGP-based path selection

> Recommendation: path selection should be done by SRTE as part of the SR Policy behavior

– Policy Color: identifies the color of the SR Policy

– End-point: identifies the end-point of the SR Policy

+---+
| Distinguisher (4 octets) |
+---+
| Policy Color (4 octets) |
+---+
| End-point (4 or 16 octets) |
+---+

N
L

R
I

Path selection in SRTE, not in BGP

• Recommendation:

– Use Distinguishers to
avoid BGP path selection

– Path selection
is better done by
SRTE process

1

2 3

5 4

CtrlCtrl

SRTE selects path
➊ or ➋ based on

Preference

BGP sends paths ➊
and ➋ to SRTE

AFI IPv4; SAFI SR Policy

NLRI:

Color green

End-point 4.4.4.4

Distinguisher 1111

Tunnel encaps attribute

<…>

AFI IPv4; SAFI SR Policy

NLRI:

Color green

End-point 4.4.4.4

Distinguisher 2222

Tunnel encaps attribute

<…>

➊ ➋

B
G

P

B
G

P

Path description

• The signaled candidate path for the SR Policy is encoded in a Tunnel
Encapsulation Attribute

– See draft-ietf-idr-tunnel-encaps; new Tunnel Type: “SR Policy”

• One single candidate path is advertised per NLRI

SR Policy SAFI NLRI:
 <Distinguisher, Policy-Color, End-point>
Attributes:
 Tunnel Encaps Attribute (23)
 Tunnel Type: SR Policy
 Preference TLV
 Binding SID TLV
 Segment List TLV
 Weight SubTLV
 Segment SubTLV
 Segment SubTLV
 ...

NLRI,
identifies SR Policy

Tunnel Encaps Attribute,
defines a candidate path for

the identified SR Policy

Direct session or via RR

1

2 3

5 4

Ctrl

AFI IPv4; SAFI SR Policy

NLRI:

Color green

End-point 4.4.4.4

Distinguisher 1111

Tunnel encaps attribute

<…>

NO-ADVERTISE community*

and/or Route-target**: 1.1.1.1

Direct session

1

2 3

5 4

CtrlRR

Via RR

AFI IPv4; SAFI SR Policy

NLRI:

Color green

End-point 4.4.4.4

Distinguisher 1111

Tunnel encaps attribute

<…>

Route-target: 1.1.1.1

* NO-ADVERTISE community: indicates: “do not advertise to any BGP neighbor”

** Route-target extended community (cfr L3VPN)

1.1.1.1 1.1.1.1

B
G

P

B
G

P

BGP only a conveyor of information

• BGP does basic sanity checks on the Update message

• If multiple paths have been received for the same NLRI (Distinguisher,
Color, End-point), run BGP bestpath

– Unlikely, see previous recommendation

• Give the path to SR-TE process
→ path is one of the possibly many candidate paths of the SR Policy

Head-end BGP SRTE Configuration

• 1.1.1.10 is a service RR (IPv4 and VPNv4)

• 1.1.1.20 is a BGP SRTE controller

router bgp 1
 bgp router-id 1.1.1.1
 address-family ipv4 unicast
 !
 address-family vpnv4 unicast
 !
 address-family ipv4 sr-policy
 !
 neighbor 1.1.1.10
 remote-as 1
 update-source Loopback0
 address-family ipv4 unicast
 !
 address-family vpnv4 unicast
 !

 neighbor 1.1.1.20
 remote-as 1
 update-source Loopback0
 address-family ipv4 sr-policy

1

2 3

5 4

Ctrl

RR

1.1.1.1

1.1.1.20

1.1.1.10

On Node1:

To Service RR

To BGP SRTE
Controller

BGP TE SR Policy – example

RP/0/0/CPU0:XRv-1#show bgp ipv4 sr-policy [2][10][1.1.1.3]/96
BGP routing table entry for [2][10][1.1.1.3]/96
Versions:
 Process bRIB/RIB SendTblVer
 Speaker 4 4
Last Modified: Jun 13 21:18:10.371 for 00:05:50
Paths: (1 available, best #1)
 Not advertised to any peer
 Path #1: Received by speaker 0
 Not advertised to any peer
 Local
 1.1.1.12 (metric 30) from 1.1.1.12 (1.1.1.12)
 Origin IGP, localpref 100, valid, internal, best, group-best
 Received Path ID 0, Local Path ID 0, version 4
 Extended community: RT:1.1.1.1:0
 Tunnel encap attribute type: 15 (SR Policy)
 bsid 900000, preference 100, num of paths 1
 Path 1, weight 0x1
 Sids: {16004} {16003}
 SR TE Policy state is UP, Allocated bsid 900000

1

2 3

5 4

Ctrl

BGP

IPv4 – SR Policy

NLRI

Color 10

End-point 1.1.1.3

Distinguisher 2

Tunnel encaps attr

Preference 100

Binding SID 900000

Segment List

 Weight: 1

 <16004, 16003>

BGP TE SR Policy – example

RP/0/0/CPU0:XRv-1#show segment-routing traffic-eng policy
SR-TE policy database

Name: bgp_AP_1 (Color: 10, End-point: 1.1.1.3)
 Status:
 Admin: up Operational: up for 00:08:19 (since Jun 13 21:18:10.469)
 Candidate-paths:
 Preference 100:
 Explicit: segment-list Autopath_1_1* (active)
 Weight: 1
 16004
 16003
 Attributes:
 Binding SID: 900000 (configured)
 Forward Class: 0
 Distinguisher: 2
 Auto-policy info:
 Creator: BGP
 IPv6 caps enable: no

1

2 3

5 4

Ctrl

BGP

IPv4 – SR Policy

NLRI

Color 10

End-point 1.1.1.3

Distinguisher 2

Tunnel encaps attr

Preference 100

Binding SID 900000

Segment List

 Weight: 1

 <16004, 16003>

Path disjointness

Path disjointness

• Disjoint paths for a service may be required to guarantee service
resiliency

– Live-live or primary-backup

• Disjoint paths do not share any (or limited) network resources

• Path disjointness may be required for paths between the same pair of
nodes, between different pairs of nodes, or a combination (only same
head or only same end)

1 2

1 2

3 4

Path disjointness levels

• Different levels of disjointness may be offered:

– Link disjointness: the paths transit different links (but may not be node or
SRLG disjoint)

– Node disjointness: the paths transit different nodes and different links
(but may not be SRLG disjoint)

– SRLG disjointness: the paths transit different links that do not share
SRLG (but may not be node disjoint)

– Node+SRLG disjointness: the paths transit different links that do not
share SRLG and transit different nodes

• Common head-end nodes and end-point nodes are not taken
into account for node-disjointness

Path disjointness levels – fallback

• If disjoint paths of a specified level are not available, then a lower level of
disjointness will be tried:

– If no node+SRLG-disjoint paths are available, then compute node-disjoint paths

– If no SRLG- or node-disjoint paths are available, then compute link-disjoint paths

– If no link-disjoint paths are available, then compute shortest paths without
disjointness constraints

• Operator can disable fallback to another disjointness level

Node+SRLG Node

SRLG

Link None

Association Groups

• The PCEP IETF draft-ietf-pce-association-group introduces a
generic mechanism to create groups of LSPs

• This grouping mechanism can then be used to define
associations between sets of LSPs or between a set of LSPs
and a set of attributes (such as configuration parameters or
behaviors)

• One application of this mechanism is grouping LSPs that
must be mutually disjoint: disjointness association-group or
disjoint-group

– Specified in draft-litkowski-pce-association-diversity

PCEP Association Object

• draft-ietf-pce-association-group specifies the PCEP
Association Object

– This object indicates the association type and the association identifier

– This object is included in PCReq and PCRept PCEP messages

• An association type is specified for ach disjointness level

– Link, Node, SRLG, Node+SRLG

• The association identifier consists of a pair: (association-id,
association source)

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Reserved | Flags |R|

+-+

| Association type | Association ID |

+-+

| IPv4 Association Source |

+-+

// Optional TLVs //

+-+

Figure 1: The IPv4 ASSOCIATION Object format

0 1 2 3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

+-+

| Reserved | Flags |R|

+-+

| Association type | Association ID |

+-+

| |

| IPv6 Association Source |

| |

| |

+-+

// Optional TLVs //

+-+

Figure 2: The IPv6 ASSOCIATION Object format

Disjointness configuration

• Policies that must be disjoint must be configured with the
same association group id and type

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.4
 candidate-paths
 preference 100
 dynamic
 pcep
 metric type igp
 constraints
 disjoint-path group-id 1 type node

Node-disjoint

Group-id 1

Disjoint paths – workflow

• This is the workflow when requesting disjoint paths:

– First path of a disjoint-group is requested, it is computed as regular
shortest path

– Second path of a disjoint-group is requested, both paths are computed
concurrently to provide the optimum solution and minimizing the
combined cumulative metrics of both paths

> PCE may need to update the first path after this computation

• Following a topology change, SR PCE re-computes both
paths and updates them if required

Disjoint paths – workflow

• Two node-disjoint paths are required
Node1→Node4 and Node5→Node8

• ➊ Node1 first requests the path to
Node4, ➋ SR PCE computes it as a
regular shortest path and ➌ replies with
SID-list <16004>

• ➍ Node1 installs the path and ➎ reports
to SR PCE, delegating control to SR PCE

1 4

5

2

6

3

7 8

100

Default link metric: 10

SID-list: <16004>

SR

PCE
5

3
1

2

4

Disjoint paths – workflow

• ➊ Node5 requests path to Node8

• ➋ SR PCE concurrently computes the
two paths and finds that the first (existing)
path must be updated to accommodate
disjointness with the second path

• ➌ SR PCE sends update to Node1 with
SID-list <16002, 30203, 16004>

• ➍ Node1 installs the new path and ➎
reports to SR PCE

1 4

5

2

6

3

7 8

100

Default link metric: 10

SR

PCE

SID-list:

<16002,

 30203,

 16004>

1 4

5

2

6

3

7 8

100

5

3
1

2

4

Disjoint paths – workflow

•➏ SR PCE sends reply to Node5
with SID-list <16008>

•➐ Node5 installs path and ➑
sends report to SR PCE 1 4

5

2

6

3

7 8

100

Default link metric: 10

SR

PCE

SID-list: <16008>

8

6

7

Disjoint paths – workflow

• Following a topology change, SR PCE is notified by
IGP/BGP-LS

• SR PCE re-computes both paths and updates them if
required

Binding-SID

Binding-SID is fundamental to SR

• The Binding-SID is fundamental to SR, it provides scaling,
network opacity and service independence

– Use of BSID decreases the number of segments imposed by the source

– A BSID acts as a stable anchor point that isolates one domain from the
churn of another domain

– A BSID provides opacity and independence between domains

DC1 Core DC2

Binding-SID illustration

• Low-delay SR Policy on DCI1 to DCI3:

– BSID: 40102

– SID-list <16022, 32223, 16003>

21 32

24

22 23

25 33

I:100
DCI1

DCI2

DCI3

DCI4

11

12

13

Default IGP metric: I:10

Default TE metric: T:10

31

BSID 40102

SID-list

<16022, 32223,

16003>

T:100

Low-delay path DCI1→DCI3

DC1 Core DC2

Reduced imposition SID-list size

• Low-delay SR Policy from Node11 to Node31:

– Without intermediate core SR Policy: <16001, 16022, 32223, 16003, 16031>

– With intermediate core SR Policy: <16001, 40102, 16031>

21 32

24

22 23

25 33

I:100
DCI1

DCI2

DCI3

DCI4

11

12

13

Default IGP metric: I:10

Default TE metric: T:10

31

BSID 40102

SID-list

<16022, 32223,

16003>

T:100

Low-delay path DCI1→DCI3

Stable Anchor Point

• When the Core domain’s topology changes, the BSID of the
intermediate SR Policy on DCI1 does not change

→ the SR Policy on Node11 does not change

→ Node11 is shielded from the churn in domain DC1

Opacity
and Independence

• The administrative authority of the Core domain does not
want to share information about its topology
→ BSID keeps network and service opaque

• Node11 does not know the details of how the Core domain
provides the low-delay service

BSID allocation

• By default, BSID is dynamically allocated

• BSID can be explicitly specified

• BSID can be allocated for RSVP-TE tunnel

Explicit allocation – Example

• Dynamic allocation is the default

segment-routing
 traffic-eng
 policy POLICY1
 color 20 end-point ipv4 1.1.1.4
 binding-sid mpls 1000
 candidate-paths
 preference 100
 dynamic
 metric
 type te

• SR Policy from Node11 to Node31:

– With intermediate RSVP-TE tunnel: <16001, 4001, 16031>

SR DC1 RSVP-TE Core SR DC2

SRTE RSVP-TE interworking

21 32

24

22 23

25 33

I:100
DCI1

DCI2

DCI3

DCI4

11

12

13

Default IGP metric: I:10

Default TE metric: T:10

31

BSID 4001

RSVP-TE

tunnel

T:100

RSVP-TE tunnel DCI1→DCI3

interface tunnel-te1
 ipv4 unnumbered Loopback0
 destination 1.1.1.3
 binding-sid mpls label 4001
 path-selection metric te
 path-option 1 dynamic

Thank you.Thank you.

	Slide 1: SR Traffic-Engineering
	Slide 2: Acknowledgements
	Slide 3: Disclaimer
	Slide 4: Illustration Conventions
	Slide 5: Key IETF document for SRTE
	Slide 6: RSVP-TE
	Slide 7: SRTE
	Slide 8: MPLS and SRv6
	Slide 9: SR Policy
	Slide 10: SR Policy Identification
	Slide 11: SR Policy Color
	Slide 12: SR Policy – Candidate Paths
	Slide 13: SR Policy – Candidate Path
	Slide 14: Dynamic Path
	Slide 15: Explicit Path
	Slide 16: Candidate Paths
	Slide 17: Candidate Paths (Cont.)
	Slide 18: Path Selection
	Slide 19: Path’s source does not influence selection
	Slide 20: Selection of a new preferred path
	Slide 21: Selection of a new preferred path
	Slide 22: Segment ID (SID)
	Slide 24: Invalid SID-list
	Slide 25: Invalid SR Policy candidate path
	Slide 26: Invalid SR Policy
	Slide 27: SR Policy invalidation behavior
	Slide 28: SID-list of an SR Policy
	Slide 29: Binding-SID (BSID) of an SR Policy
	Slide 30: An SR Policy should have a stable BSID
	Slide 31: Active SR Policy
	Slide 32: Active SR Policy – FIB entry
	Slide 33: Weighted ECMP (WECMP)
	Slide 34: Active SR Policy – FIB entry – WECMP
	Slide 35: Configuration
	Slide 36: Head-end SRTE DB – IGP config
	Slide 37: Head-end TE Router-ID – IGP config
	Slide 38: Head-end SR-TE Policy Source Address
	Slide 39: SR Policy – configuration example
	Slide 40: SR Policy – configuration example
	Slide 41: SR Policy – configuration example
	Slide 42: SR Policy – configuration example
	Slide 43: SR Policy – configuration example
	Slide 44: WECMP example
	Slide 45: Explicit Path
	Slide 46: SID-list with addresses – example
	Slide 47: SID-list with labels – example
	Slide 48: Path Validation
	Slide 49: Set of SID-lists – example
	Slide 50: Use-case Dual Plane – Anycast-SID
	Slide 51: Use-case TDM migration
	Slide 52: Dynamic Path
	Slide 53: Optimization Objectives and Constraints
	Slide 54: SR-optimized algorithms Circuit optimization vs SR optimization
	Slide 55: SR-optimized algorithms Circuit optimization vs SR optimization
	Slide 56: Circuit Optimization vs SR Optimization
	Slide 57: SR-optimized algorithms Circuit optimization vs SR optimization
	Slide 58: Optimization Objectives
	Slide 59: Min-Metric Optimization
	Slide 60: Min-Metric with Margin and max SID-list
	Slide 61: Why Min-metric with margin?
	Slide 62: Min-Metric with Margin and max SID-list
	Slide 63: Use-case Low-delay
	Slide 64: Use-case Plane Affinity
	Slide 65: Use-case Service Disjointness from same head-end
	Slide 66: Constraints
	Slide 67: Constraints
	Slide 68: Constraint – TE affinity
	Slide 69: Constraint – Add affinity colors to links
	Slide 70: Constraint – TE affinity
	Slide 71: Constraint – SR Policy Path affinity
	Slide 72: Constraint – IP address
	Slide 73: Constraint – SRLG
	Slide 74: Constraint – SRLG
	Slide 75: Constraint – maximum metric
	Slide 76: Constraint – limit SIDs
	Slide 77: Constraint – disjointness
	Slide 78: Topological path  SID-list
	Slide 79: Topological path  SID-list
	Slide 80: Topological path  SID-list – Example 1
	Slide 81: Topological path  SID-list – Example 2
	Slide 82: Topological path to SID-list – TE metric
	Slide 83: Traffic Steering
	Slide 84: Binding-SID (BSID) is fundamental
	Slide 85: Automated steering
	Slide 86: Color Extended Community attribute
	Slide 87: Steering – Color-only (CO) bits
	Slide 88: Steering – Color-only (CO) bits
	Slide 89: Steering – Color-only (CO) bits – Notes
	Slide 90: Steering is independent of type of SR Policy
	Slide 91: Route has multiple colors
	Slide 92: Multiple colors for Prim/Secon SR Policies
	Slide 93: Disable automated traffic steering
	Slide 94: Setting color of route
	Slide 95: Color assignment on egress PE
	Slide 96: Color assignment Egress PE
	Slide 97: RPL attach points to set color ext community
	Slide 98: Ingress PE
	Slide 99: Color assignment on ingress PE
	Slide 100: Ingress PE
	Slide 101: Pseudowire Preferred path
	Slide 102: On-Demand Nexthop (ODN)
	Slide 103: On-Demand Nexthop
	Slide 104: On-demand SR Policy
	Slide 105: On-demand SR Policy
	Slide 106: Automated Steering
	Slide 107: Different VPNs need different underlay SLA
	Slide 108: On-demand SR Policy work-flow
	Slide 109: Performant Automated Steering
	Slide 110: Benefits
	Slide 111: Multi-domain On-Demand Nexthop (ODN)
	Slide 112: On-Demand Nexthop – multi-domain
	Slide 113: On-Demand Nexthop – multi-domain
	Slide 114: On-Demand Nexthop – workflow
	Slide 115: On-Demand Nexthop
	Slide 116: On-Demand Nexthop reachability
	Slide 117: On-Demand Nexthop reachability
	Slide 118: On-Demand Nexthop with SLA
	Slide 119: On-Demand Nexthop with SLA
	Slide 120: Benefits
	Slide 121: Dynamic Path Distributed or Centralized?
	Slide 122: Distributed and Centralized
	Slide 123: Head-end and SR PCE: same algorithms
	Slide 124: Path Computation Distributed or Centralized?
	Slide 125: SR PCE
	Slide 126: SR Path Computation Element (SR PCE)
	Slide 127: SR PCE – IOS XR PCE
	Slide 128: SR PCE – Real-time Topology Feed
	Slide 129: Same multi-domain SRTE DB
	Slide 130: Same multi-domain SRTE DB
	Slide 131: SR PCE – Multi-domain real-time topology feed
	Slide 132: BGP-LS feed to SR PCE
	Slide 133: SR PCE receives topology of all domains
	Slide 134: SR PCE consolidates the topologies
	Slide 135: SR PCE and Multi-domain – Notes
	Slide 136: SR PCE and Multi-domain – Notes
	Slide 137: SR PCE and Multi-domain – Notes
	Slide 138: Same computation algorithms
	Slide 139: SR PCE computes dynamic path
	Slide 140: SR PCE computes dynamic path
	Slide 141: SR PCE computes dynamic path
	Slide 142: Request/Reply/Report workflow
	Slide 143: Request/Reply/Report workflow (Cont.)
	Slide 144: Request/Reply/Report workflow (Cont.)
	Slide 145: Decouple overlay/underlay
	Slide 146: SR PCE – Stateful
	Slide 147: Stateful – SR PCE updates path
	Slide 148: Stateful – SR PCE updates path
	Slide 149: SR PCE – High Availability (HA)
	Slide 150: SR PCE HA – workflow
	Slide 151: SR PCE HA – workflow
	Slide 152: SR PCE – Fundamentally Distributed
	Slide 153: SR PCE – Fundamentally Distributed
	Slide 154: SR PCE – Fundamentally Distributed
	Slide 155: Use-case Service Disjointness
	Slide 156: Use-case Inter-Domain Path – Best Effort
	Slide 157: Use-case Inter-Domain Path – Low-Delay
	Slide 158: BGP-SRTE Signaling SR Policy path via BGP
	Slide 159: Signaling SR Policy candidate path via BGP
	Slide 160: Signaling SR Policy candidate path via BGP
	Slide 161: SAFI and NLRI
	Slide 162: Path selection in SRTE, not in BGP
	Slide 163: Path description
	Slide 164: Direct session or via RR
	Slide 165: BGP only a conveyor of information
	Slide 166: Head-end BGP SRTE Configuration
	Slide 167: BGP TE SR Policy – example
	Slide 168: BGP TE SR Policy – example
	Slide 169: Path disjointness
	Slide 170: Path disjointness
	Slide 171: Path disjointness levels
	Slide 172: Path disjointness levels – fallback
	Slide 173: Association Groups
	Slide 174: PCEP Association Object
	Slide 175: Disjointness configuration
	Slide 176: Disjoint paths – workflow
	Slide 177: Disjoint paths – workflow
	Slide 178: Disjoint paths – workflow
	Slide 179: Disjoint paths – workflow
	Slide 180: Disjoint paths – workflow
	Slide 181: Binding-SID
	Slide 182: Binding-SID is fundamental to SR
	Slide 183: Binding-SID illustration
	Slide 184: Reduced imposition SID-list size
	Slide 185: Stable Anchor Point
	Slide 186: Opacity and Independence
	Slide 187: BSID allocation
	Slide 188: Explicit allocation – Example
	Slide 189: SRTE RSVP-TE interworking
	Slide 198

